
The J2EE™ 1.4 Tutorial

for NetBeans™ IDE 4.1

For Sun Java System Application Server
Platform Edition 8.1

Eric Armstrong
Jennifer Ball

Stephanie Bodoff
Debbie Bode Carson

Ian Evans
Kenneth Ganfield

Dale Green
Kim Haase

Eric Jendrock
John Jullion-Ceccarelli

Geertjan Wielenga

May 11, 2005

3

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise JavaBeans, Java
Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run Anywhere”, and the Java
Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, samples) is pro-
vided under this License.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and
may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or
nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to coun-
tries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the
denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTA-
TIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous
droits réservés.
Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmen-
taux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la
FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.
Cette distribution peut comprendre des composants développés pardes tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise JavaBeans, Java
Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run Anywhere”, et le logo
Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux États-Unis et
dans d’autres pays.
A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (articles y compris,
FAQs, échantillons) est fourni sous ce permis.
Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation
américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des
exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interd-
ites. Les exportations ou réexportations vers des pays sous embargo des États-Unis, ou vers des entités figurant sur les
listes d’exclusion d’exportation américaines, y compris, mais de manière non exclusive, la liste de personnes qui font
objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services
qui sont régi par la législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s
Table of Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS
ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE
AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELA-
TIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

4

iii

Contents

About This Tutorial. xi

Who Should Use This Tutorial xi
Prerequisites xi
About the Examples xi
Further Information xiii
How to Print This Tutorial xiv
Typographical Conventions xiv
Feedback xv

Chapter 1: Overview. .1
Distributed Multitiered Applications 2

J2EE Components 3
J2EE Clients 4
Web Components 6
Business Components 6
Enterprise Information System Tier 8

J2EE Containers 8
Container Services 8
Container Types 9

Web Services Support 10
XML 11
SOAP Transport Protocol 12
WSDL Standard Format 12
UDDI and ebXML Standard Formats 12

Packaging Applications 13
J2EE 1.4 APIs 15

Enterprise JavaBeans Technology 15
Java Servlet Technology 16
JavaServer Pages Technology 16

iv CONTENTS
Java Message Service API 16
Java Transaction API 16
JavaMail API 17
JavaBeans Activation Framework 17
Java API for XML Processing 17
Java API for XML-Based RPC 17
SOAP with Attachments API for Java 18
Java API for XML Registries 18
J2EE Connector Architecture 19
JDBC API 19
Java Naming and Directory Interface 19
Java Authentication and Authorization Service 20
Simplified Systems Integration 21

Sun Java System Application Server Platform Edition 8 21
Technologies 22
Tools 23
Registering the Application Server 24
Starting and Stopping the Application Server 24
Starting the Admin Console 25
Starting and Stopping the PointBase Database Server 25
Debugging J2EE Applications 25

Chapter 2: Building Web Services with JAX-RPC. 29
Setting the Port 30
Creating a Simple Web Service and Client with JAX-RPC 30

Generating and Coding the Service Endpoint Interface and Implementa-
tion Class 32
Building the Service 33
Deploying the Service 36
Static Stub Clients 36
Running the Static Stub Client 41

Types Supported by JAX-RPC 42
J2SE SDK Classes 42
Primitives 42
Arrays 43
Value Types 43
JavaBeans Components 43

Web Service Clients 43
Dynamic Proxy Client 44
Dynamic Invocation Interface Client 47

CONTENTS v
Web Services Interoperability and JAX-RPC 51
Further Information 51

Chapter 3: SOAP with Attachments API for Java 53
Overview of SAAJ 54

Messages 54
Connections 58

Tutorial 59
Creating and Sending a Simple Message 60
Adding Content to the Header 69
Adding Content to the SOAPPart Object 70
Adding a Document to the SOAP Body 71
Manipulating Message Content Using SAAJ or DOM APIs 72
Adding Attachments 72
Adding Attributes 75
Using SOAP Faults 80

Code Examples 85
Request.java 85
MyUddiPing.java 86
HeaderExample.java 93
DOMExample.java and DOMSrcExample.java 95
Attachments.java 99
SOAPFaultTest.java 101

Further Information 102

Chapter 4: Enterprise Beans .105

What Is an Enterprise Bean? 105
Benefits of Enterprise Beans 105
When to Use Enterprise Beans 106
Types of Enterprise Beans 107

What Is a Session Bean? 107
State Management Modes 107
When to Use Session Beans 108

What Is an Entity Bean? 109
What Makes Entity Beans Different from Session Beans? 109
Container-Managed Persistence 111
When to Use Entity Beans 114

What Is a Message-Driven Bean? 114
What Makes Message-Driven Beans Different from Session and Entity

vi CONTENTS
Beans? 115
When to Use Message-Driven Beans 116

Defining Client Access with Interfaces 116
Remote Clients 117
Local Clients 118
Local Interfaces and Container-Managed Relationships 118
Deciding on Remote or Local Access 119
Web Service Clients 120
Method Parameters and Access 120

The Contents of an Enterprise Bean 121
Naming Conventions for Enterprise Beans 122
The Life Cycles of Enterprise Beans 123

The Life Cycle of a Stateful Session Bean 123
The Life Cycle of a Stateless Session Bean 124
The Life Cycle of an Entity Bean 125
The Life Cycle of a Message-Driven Bean 127

Further Information 128

Chapter 5: Getting Started with Enterprise Beans. 129
Creating the J2EE Application 130
Creating the Enterprise Bean 130

Creating the ConverterBean Enterprise Bean 130
Creating the Web Client 133

Coding the Web Client 133
Specifying the Enterprise Application’s Default URL 135
Deploying the J2EE Application 135
Running the Web Client 136
Modifying the J2EE Application 137

Modifying a Deployment Setting 137

Chapter 6: Session Bean Examples . 139
The CartBean Example Application 139

Creating the Cart EJB Project 140
Session Bean Interfaces 147
Building and Deploying the Application 150
The CartClient Application 151

The HelloService Web Service Example 153
Web Service Endpoint Interface 154
Stateless Session Bean Implementation Class 154

CONTENTS vii
Running the HelloWebClient Application 156
Other Enterprise Bean Features 156

Accessing Environment Entries 156
Comparing Enterprise Beans 158
Passing an Enterprise Bean’s Object Reference 158

Using the Timer Service 159
Creating Timers 159
Canceling and Saving Timers 160
Getting Timer Information 161
Transactions and Timers 161
The TimerSessionBean Example 162

Handling Exceptions 164

Chapter 7: Bean-Managed Persistence Examples167
The SavingsAccountBean Example 167

Creating the SavingsAccount Project 168
Entity Bean Class 169
Home Interface 182
Remote Interface 184
Running the SavingsAccount Example 185
Creating the Sample Database 185

Mapping Table Relationships for Bean-Managed Persistence 187
One-to-One Relationships 188
One-to-Many Relationships 192
Many-to-Many Relationships 201

Primary Keys for Bean-Managed Persistence 204
The Primary Key Class 204
Primary Keys in the Entity Bean Class 206
Getting the Primary Key 207

Chapter 8: Container-Managed Persistence Examples.209
Overview of the Roster Module 209
Creating the Roster EJB Module 210

Creating the Project 211
Creating the Database Tables 211
Generating the CMP Entity Beans 213

The PlayerBean Code 213
Entity Bean Class 214
Refactoring Entity Bean Methods 223

viii CONTENTS
Local Home Interface 224
Local Interface 225

Creating the RosterBean Session Bean 226
Method Invocations in the Roster Module 228

Creating a Player 228
Adding a Player to a Team 230
Removing a Player 231
Dropping a Player from a Team 232
Getting the Players of a Team 233
Getting a Copy of a Team’s Players 235
Finding the Players by Position 236
Getting the Sports of a Player 238

Building and Running the Roster Example 239
Building and Deploying the EJB Module 240
Running the Client Application 240

Primary Keys for Container-Managed Persistence 241
The Primary Key Class 242

Advanced CMP Topics: The Order Example 244
Structure of Order 244
Bean Relationships in Order 245
Primary Keys in Order’s Entity Beans 247
Entity Bean Mapped to More Than One Database Table 250
Finder and Selector Methods 250
Using Home Methods 250
Cascade Deletes in Order 251
BLOB and CLOB Database Types in Order 251
Building and Running the Order Example 252

Chapter 9: A Message-Driven Bean Example 255

Example Application Overview 255
The SimpleMessageClient Application 256

Creating the SimpleMessageClient application 256
The Message-Driven Bean 259

Creating the SimpleMessage EJB Module 259
Creating the SimpleMessageMDB 260
The ejbCreate and ejbRemove Methods 261
The onMessage Method 261

Building and Deploying SimpleMessage Module 263
Building and Deploying the Application 263
Running the Client 264

CONTENTS ix
Removing the Administered Objects 264

Glossary .267

Index .305

x CONTENTS

About This Tutorial

THE J2EE™ 1.4 Tutorial is a guide to developing enterprise applications for
the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here we cover all the
things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.1 2005Q1.

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wesley, 2000).

About the Examples
This section tells you everything you need to know to install, build, and run the
examples.
xi

xii ABOUT THIS TUTORIAL
Required Software

Tutorial Bundle
The tutorial example source is contained in the tutorial bundle. If you are view-
ing this online, you need to download tutorial bundle from:

http://www.netbeans.org/files/documents/4/441/j2eetutorial14.zip

After you have installed the tutorial bundle, the example source code is in the
<INSTALL>/j2eetutorial14/examples/ directory.

NetBeans IDE 4.1
The tutorial examples are developed and built using the 4.1 release of the Net-
Beans Integrated Development Environment (IDE). The IDE is the first open
source IDE to support the new J2SE 5.0 "Tiger" language features, and is the
first IDE to base its project system entirely on Apache Ant. This robust open
source Java IDE has everything that you need to develop, build, and deploy
cross-platform J2EE applications straight out of the box.

When you download the NetBeans IDE, you get a modular, standards-based
development environment with all the key functionality in one download, rather
than a series of additional plug-ins. Write, compile, debug and deploy Java pro-
grams for the Solaris, Windows, Linux and Macintosh platforms. Download it
from:

http://www.netbeans.org

Application Server
The Sun Java System Application Server Platform Edition 8.1 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2_06 or higher. If you
already have a copy of the J2SE SDK, you can download the Application Server
bundled with the IDE from:

http://www.netbeans.info/downloads

http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#sdk

ABOUT THIS TUTORIAL xiii
Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,

• Select the Don’t Prompt for Admin User Name radio button. This will save
the user name and password so that you won’t need to provide them when
performing administrative operations with the IDE. You will still have to
provide the user name and password to log in to the Admin Console.

• Note the HTTP port at which the server is installed. This tutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port or if you decide to
change it yourself, you will need to update the configuration files for some
of the tutorial examples to reflect the correct port.

Building the Examples
The tutorial examples are distributed with IDE projects. Directions for building
the examples are provided in each chapter.

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examples is stored in the follow-
ing structure under each application directory:

• build.xml: build file
• src: Java source of servlets and JavaBeans components; tag libraries
• web: JSP pages and HTML pages, tag files, and images
• nbproject: IDE project files

The build files (build.xml) distributed with the examples contain targets that you
can use from the IDE to create a build subdirectory and to copy and compile files
into that directory.

Further Information
This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

xiv ABOUT THIS TUTORIAL
For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/817-6092.

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide at http://docs.sun.com/db/doc/817-6087 for information about developer features
of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about administering
the Application Server.

For information about the PointBase database included with the Application
Server see the PointBase web site at www.pointbase.com.

For information about the IDE see the NetBeans site at www.netbeans.org.

How to Print This Tutorial
To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader is installed on your system.
2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions
Table 1 lists the typographical conventions used in this tutorial.

Table 1 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, path names, tool names,
application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6087
http://docs.sun.com/db/doc/817-6088
http://www.pointbase.com
http://www.pointbase.com
J2EETutorial.pdf

ABOUT THIS TUTORIAL xv
Menu selections indicated with the right-arrow character →, for example,
First→Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Feedback
To send comments, broken link reports, errors, suggestions, and questions about
this tutorial, please write to nbdocs_feedback@usersguide.netbeans.org.

http://www.pointbase.com

xvi ABOUT THIS TUTORIAL

1

1

Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and thereby leverage the speed, security, and reli-
ability of server-side technology. If you are already working in this area, you
know that in the fast-moving and demanding world of e-commerce and informa-
tion technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, the Java™ 2
Platform, Enterprise Edition (J2EE™) provides a component-based approach to
the design, development, assembly, and deployment of enterprise applications.
The J2EE platform offers a multitiered distributed application model, reusable
components, a unified security model, flexible transaction control, and web ser-
vices support through integrated data interchange on Extensible Markup Lan-
guage (XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than
ever, but also your platform-independent J2EE component-based solutions are
not tied to the products and application programming interfaces (APIs) of any
one vendor. Vendors and customers enjoy the freedom to choose the products
and components that best meet their business and technological requirements.

This tutorial uses examples to describe the features and functionalities available
in the J2EE platform version 1.4 for developing enterprise applications. Whether
you are a new or an experienced developer, you should find the examples and
accompanying text a valuable and accessible knowledge base for creating your
own solutions.

2 OVERVIEW
If you are new to J2EE enterprise application development, this chapter is a good
place to start. Here you will review development basics, learn about the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distributed Multitiered Applications
The J2EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica-
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1–1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1–1 are presented in
J2EE Components (page 3).

• Client-tier components run on the client machine.
• Web-tier components run on the J2EE server.
• Business-tier components run on the J2EE server.
• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Fig-
ure 1–1, J2EE multitiered applications are generally considered to be three-tiered
applications because they are distributed over three locations: client machines,
the J2EE server machine, and the database or legacy machines at the back end.
Three-tiered applications that run in this way extend the standard two-tiered cli-
ent and server model by placing a multithreaded application server between the
client application and back-end storage.

J2EE COMPONENTS 3
Figure 1–1 Multitiered Applications

J2EE Components
J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The
J2EE specification defines the following J2EE components:

• Application clients and applets are components that run on the client.
• Java Servlet and JavaServer Pages™ (JSP™) technology components are

web components that run on the server.
• Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-

ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, are verified to be well formed and in compli-
ance with the J2EE specification, and are deployed to production, where they are
run and managed by the J2EE server.

4 OVERVIEW
J2EE Clients
A J2EE client can be a web client or an application client.

Web Clients
A web client consists of two parts: (1) dynamic web pages containing various
types of markup language (HTML, XML, and so on), which are generated by
web components running in the web tier, and (2) a web browser, which renders
the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.
When you use a thin client, such heavyweight operations are off-loaded to enter-
prise beans executing on the J2EE server, where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies.

Applets
A web page received from the web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine installed in the web browser. However,
client systems will likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program
because no plug-ins or security policy files are needed on the client systems.
Also, web components enable cleaner and more modular application design
because they provide a way to separate applications programming from web
page design. Personnel involved in web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients
An application client runs on a client machine and provides a way for users to
handle tasks that require a richer user interface than can be provided by a markup
language. It typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line inter-
face is certainly possible.

J2EE CLIENTS 5
Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open
an HTTP connection to establish communication with a servlet running in the
web tier.

The JavaBeans™ Component Architecture
The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans components) to manage the data flow
between an application client or applet and components running on the J2EE
server, or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have properties and have get and set methods for
accessing the properties. JavaBeans components used in this way are typically
simple in design and implementation but should conform to the naming and
design conventions outlined in the JavaBeans component architecture.

J2EE Server Communications
Figure 1–2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, as in the case of a client running in a browser, by going through JSP
pages or servlets running in the web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

6 OVERVIEW
Figure 1–2 Server Communications

Web Components
J2EE web components are either servlets or pages created using JSP technology
(JSP pages). Servlets are Java programming language classes that dynamically
process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static con-
tent.

Static HTML pages and applets are bundled with web components during appli-
cation assembly but are not considered web components by the J2EE specifica-
tion. Server-side utility classes can also be bundled with web components and,
like HTML pages, are not considered web components.

As shown in Figure 1–3, the web tier, like the client tier, might include a Java-
Beans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components
Business code, which is logic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1–4 shows how an enterprise bean receives
data from client programs, processes it (if necessary), and sends it to the enter-

BUSINESS COMPONENTS 7
prise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with a cli-
ent. When the client finishes executing, the session bean and its data are gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean data is saved. A message-driven bean combines fea-

8 OVERVIEW
tures of a session bean and a Java Message Service (JMS) message listener,
allowing a business component to receive JMS messages asynchronously.

Enterprise Information System Tier
The enterprise information system tier handles EIS software and includes enter-
prise infrastructure systems such as enterprise resource planning (ERP), main-
frame transaction processing, database systems, and other legacy information
systems. For example, J2EE application components might need access to enter-
prise information systems for database connectivity.

J2EE Containers
Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because business logic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yourself, you are free to concentrate on solving the business problem at
hand.

Container Services
Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a web component,
enterprise bean, or application client component can be executed, it must be
assembled into a J2EE module and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, including ser-
vices such as security, transaction management, Java Naming and Directory

CONTAINER TYPES 9
Interface™ (JNDI) lookups, and remote connectivity. Here are some of the high-
lights:

• The J2EE security model lets you configure a web component or enterprise
bean so that system resources are accessed only by authorized users.

• The J2EE transaction model lets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

• JNDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access naming and directory services.

• The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it as if it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application com-
ponents within the same J2EE application can behave differently based on where
they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environ-
ment and another level of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in section J2EE 1.4
APIs (page 15). Although data persistence is a nonconfigurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

Container Types
The deployment process installs J2EE application components in the J2EE con-
tainers illustrated in Figure 1–5.

10 OVERVIEW
Figure 1–5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. web components and their container run on the J2EE server.

Application client container
Manages the execution of application client components. Application clients
and their container run on the client.

Applet container
Manages the execution of applets. Consists of a web browser and Java Plug-
in running on the client together.

Web Services Support
Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. The J2EE

XML 11
platform provides the XML APIs and tools you need to quickly design, develop,
test, and deploy web services and clients that fully interoperate with other web
services and clients running on Java-based or non-Java-based platforms.

To write web services and clients with the J2EE XML APIs, all you do is pass
parameter data to the method calls and process the data returned; or for docu-
ment-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed because the XML API
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the fol-
lowing sections.

The translation of data to a standardized XML-based data stream is what makes
web services and clients written with the J2EE XML APIs fully interoperable.
This does not necessarily mean that the data being transported includes XML
tags because the transported data can itself be plain text, XML data, or any kind
of binary data such as audio, video, maps, program files, computer-aided design
(CAD) documents and the like. The next section introduces XML and explains
how parties doing business can use XML tags and schemas to exchange data in a
meaningful way.

XML
XML is a cross-platform, extensible, text-based standard for representing data.
When XML data is exchanged between parties, the parties are free to create their
own tags to describe the data, set up schemas to specify which tags can be used
in a particular kind of XML document, and use XML stylesheets to manage the
display and handling of the data.

For example, a web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own
stylesheets to handle the data in a way that best suits their needs. Here are exam-
ples:

• One company might put XML pricing information through a program to
translate the XML to HTML so that it can post the price lists to its intranet.

• A partner company might put the XML pricing information through a tool
to create a marketing presentation.

• Another company might read the XML pricing information into an appli-
cation for processing.

12 OVERVIEW
SOAP Transport Protocol
Client requests and web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and web services, all running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request-and
response standard for sending messages over the Internet, and SOAP is an XML-
based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

• Defines an XML-based envelope to describe what is in the message and
how to process the message

• Includes XML-based encoding rules to express instances of application-
defined data types within the message

• Defines an XML-based convention for representing the request to the
remote service and the resulting response

WSDL Standard Format
The Web Services Description Language (WSDL) is a standardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and ways to communicate with the service.
WSDL service descriptions can be stored in UDDI registries or published on the
web (or both). The Sun Java System Application Server Platform Edition 8 pro-
vides a tool for generating the WSDL specification of a web service that uses
remote procedure calls to communicate with clients.

UDDI and ebXML Standard Formats
Other XML-based standards, such as Universal Description, Discovery and Inte-
gration (UDDI) and ebXML, make it possible for businesses to publish informa-
tion on the Internet about their products and web services, where the information
can be readily and globally accessed by clients who want to do business.

PACKAGING APPLICATIONS 13
Packaging Applications
A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard
Java Archive (JAR) file with an .ear extension. Using EAR files and modules
makes it possible to assemble a number of different J2EE applications using
some of the same components. No extra coding is needed; it is only a matter of
assembling (or packaging) various J2EE modules into J2EE EAR files.

An EAR file (see Figure 1–6) contains J2EE modules and deployment descrip-
tors. A deployment descriptor is an XML document with an .xml extension that
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed
without the need to modify the source code. At runtime, the J2EE server reads
the deployment descriptor and acts upon the application, module, or component
accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE
deployment descriptor is defined by a J2EE specification and can be used to con-
figure deployment settings on any J2EE-compliant implementation. A runtime
deployment descriptor is used to configure J2EE implementation-specific
parameters. For example, the Sun Java System Application Server Platform Edi-
tion 8 runtime deployment descriptor contains information such as the context
root of a web application, the mapping of portable names of an application’s
resources to the server’s resources, and Application Server implementation-spe-
cific parameters, such as caching directives. The Application Server runtime
deployment descriptors are named sun-moduleType.xml and are located in the
same directory as the J2EE deployment descriptor.

14 OVERVIEW
Figure 1–6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. An enterprise bean
module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A J2EE module without an appli-
cation deployment descriptor can be deployed as a stand-alone module. The four
types of J2EE modules are as follows:

• EJB modules, which contain class files for enterprise beans and an EJB
deployment descriptor. EJB modules are packaged as JAR files with a
.jar extension.

• Web modules, which contain servlet class files, JSP files, supporting class
files, GIF and HTML files, and a web application deployment descriptor.
Web modules are packaged as JAR files with a .war (web archive) exten-
sion.

• Application client modules, which contain class files and an application
client deployment descriptor. Application client modules are packaged as
JAR files with a .jar extension.

• Resource adapter modules, which contain all Java interfaces, classes,
native libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 19) for a particular EIS.
Resource adapter modules are packaged as JAR files with an .rar
(resource adapter archive) extension.

J2EE 1.4 APIS 15
J2EE 1.4 APIs
Figure 1–7 illustrates the availability of the J2EE 1.4 platform APIs in each
J2EE container type. The following sections give a brief summary of the tech-
nologies required by the J2EE platform and the J2SE enterprise APIs that would
be used in J2EE applications.

Figure 1–7 J2EE Platform APIs

Enterprise JavaBeans Technology
An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is a body of
code having fields and methods to implement modules of business logic. You
can think of an enterprise bean as a building block that can be used alone or with
other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans: session beans,
entity beans, and message-driven beans. Enterprise beans often interact with
databases. One of the benefits of entity beans is that you do not have to write any
SQL code or use the JDBC™ API (see JDBC API, page 19) directly to perform

16 OVERVIEW
database access operations; the EJB container handles this for you. However, if
you override the default container-managed persistence for any reason, you will
need to use the JDBC API. Also, if you choose to have a session bean access the
database, you must use the JDBC API.

Java Servlet Technology
Java servlet technology lets you define HTTP-specific servlet classes. A servlet
class extends the capabilities of servers that host applications that are accessed
by way of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend the applica-
tions hosted by web servers.

JavaServer Pages Technology
JavaServer Pages™ (JSP™) technology lets you put snippets of servlet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static data (which can be expressed in any text-based
format such as HTML, WML, and XML) and JSP elements, which determine
how the page constructs dynamic content.

Java Message Service API
The Java Message Service (JMS) API is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cations that are viewing data will see the updated data after each database read or
write operation. However, if your application performs two separate database
access operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

JAVAMAIL API 17
JavaMail API
J2EE applications use the JavaMail™ API to send email notifications. The Java-
Mail API has two parts: an application-level interface used by the application
components to send mail, and a service provider interface. The J2EE platform
includes JavaMail with a service provider that allows application components to
send Internet mail.

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. JAF provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

Java API for XML Processing
The Java API for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML (SAX),
and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser or XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
this URL: http://www.w3.org/XML/Schema.

Java API for XML-Based RPC
The Java API for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTP, so client programs can make XML-based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL, so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Java-based or non-Java-based platforms
such as .NET. For example, based on the WSDL document, a Visual Basic .NET
client can be configured to use a web service implemented in Java technology, or
a web service can be configured to recognize a Visual Basic .NET client.

http://www.w3.org/XML/Schema

18 OVERVIEW
JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HTTP with a Java tech-
nology version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols to establish basic or mutual authentication. SSL and TLS ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is a measured way to verify whether a party is eligible and able to
access certain information as a way to protect against the fraudulent use of a sys-
tem or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
it’s very important to configure a JAX-RPC web service to protect data in transit.

SOAP with Attachments API for Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API on which
JAX-RPC depends. SAAJ enables the production and consumption of messages
that conform to the SOAP 1.1 specification and SOAP with Attachments note.
Most developers do not use the SAAJ API, instead using the higher-level JAX-
RPC API.

Java API for XML Registries
The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the web. JAXR supports the ebXML Registry and Repos-
itory standards and the emerging UDDI specifications. By using JAXR, develop-
ers can learn a single API and gain access to both of these important registry
technologies.

Additionally, businesses can submit material to be shared and search for material
that others have submitted. Standards groups have developed schemas for partic-
ular kinds of XML documents; two businesses might, for example, agree to use
the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
access it.

J2EE CONNECTOR ARCHITECTURE 19
J2EE Connector Architecture
The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systems that can be plugged in to any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager of the EIS. Because a resource adapter is
specific to its resource manager, typically there is a different resource adapter for
each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector architecture
into the J2EE platform can be exposed as XML-based web services by using
JAX-RPC and J2EE component models. Thus JAX-RPC and the J2EE Connec-
tor architecture are complementary technologies for enterprise application inte-
gration (EAI) and end-to-end business integration.

JDBC API
The JDBC API lets you invoke SQL commands from Java programing language
methods. You use the JDBC API in an enterprise bean when you override the
default container-managed persistence or have a session bean access the data-
base. With container-managed persistence, database access operations are han-
dled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from a servlet or
a JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts: an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Naming and Directory Interface
The Java Naming and Directory Interface™ (JNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for

20 OVERVIEW
objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of named Java object.

J2EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment
and provides it to the component as a JNDI naming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects,
are stored in the environment naming context, java:comp/env. The J2EE plat-
form allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontext java:comp/env/ejb, and JDBC DataSource references in the sub-
context java:comp/env/jdbc.

Because JNDI is independent of any specific implementation, applications can
use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
J2EE applications to coexist with legacy applications and systems. For more
information on JNDI, see The JNDI Tutorial:

http://java.sun.com/products/jndi/tutorial/index.html

Java Authentication and Authorization
Service
The Java Authentication and Authorization Service (JAAS) provides a way for a
J2EE application to authenticate and authorize a specific user or group of users
to run it.

http://java.sun.com/products/jndi/tutorial/index.html

SIMPLIFIED SYSTEMS INTEGRATION 21
JAAS is a Java programing language version of the standard Pluggable Authen-
tication Module (PAM) framework, which extends the Java 2 Platform security
architecture to support user-based authorization.

Simplified Systems Integration
The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but instead by trying to outdo each other in
providing products and services that benefit customers, such as better perfor-
mance, better tools, or better customer support.

The J2EE APIs enable systems and applications integration through the follow-
ing:

• Unified application model across tiers with enterprise beans
• Simplified request-and-response mechanism with JSP pages and servlets
• Reliable security model with JAAS
• XML-based data interchange integration with JAXP, SAAJ, and JAX-RPC
• Simplified interoperability with the J2EE Connector architecture
• Easy database connectivity with the JDBC API
• Enterprise application integration with message-driven beans and JMS,

JTA, and JNDI

You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice, by Rick Cattell and Jim
Inscore (Addison-Wesley, 2001):

http://java.sun.com/j2ee/inpractice/aboutthebook.html

Sun Java System Application Server
Platform Edition 8

The Sun Java System Application Server Platform Edition 8 is a fully compliant
implementation of the J2EE 1.4 platform. In addition to supporting all the APIs
described in the previous sections, the Application Server includes a number of

http://java.sun.com/j2ee/inpractice/aboutthebook.html

22 OVERVIEW
J2EE technologies and tools that are not part of the J2EE 1.4 platform but are
provided as a convenience to the developer.

This section briefly summarizes the technologies and tools that make up the
Application Server, and instructions for starting and stopping the Application
Server, starting the Admin Console, starting deploytool, and starting and stop-
ping the PointBase database server. Other chapters explain how to use the
remaining tools.

Technologies
The Application Server includes two user interface technologies—JavaServer
Pages Standard Tag Library and JavaServer™ Faces—that are built on and used
in conjunction with the J2EE 1.4 platform technologies Java servlet and JavaSer-
ver Pages.

JavaServer Pages Standard Tag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ a single, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manip-
ulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

JavaServer Faces
JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as fol-
lows:

• A GUI component framework.
• A flexible model for rendering components in different kinds of HTML or

different markup languages and technologies. A Renderer object gener-
ates the markup to render the component and converts the data stored in a
model object to types that can be represented in a view.

TOOLS 23
• A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

• Input validation
• Event handling
• Data conversion between model objects and components
• Managed model object creation
• Page navigation configuration

All this functionality is available via standard Java APIs and XML-based config-
uration files.

Tools
The Application Server contains the tools listed in Table 1–1. All can be used
from the IDE. Basic usage information for many of the tools appears throughout
the tutorial. For detailed information, see the online help in the GUI tools and the
man pages at http://docs.sun.com/db/doc/817-6092 for the command-line
tools.

Table 1–1 Application Server Tools

Component Description

Admin Console
A web-based GUI Application Server administration utility. Used to
stop the Application Server and manage users, resources, and appli-
cations.

PointBase database An evaluation copy of the PointBase database server.

verifier A command-line tool to validate J2EE deployment descriptors.

wscompile
A command-line tool to generate stubs, ties, serializers, and WSDL
files used in JAX-RPC clients and services.

wsdeploy
A command-line tool to generate implementation-specific, ready-to-
deploy WAR files for web service applications that use JAX-RPC.

http://docs.sun.com/db/doc/817-6092

24 OVERVIEW
Registering the Application Server
To register the Application Server, you can use the IDE. Note that if you down-
loaded and installed the version of the IDE that comes bundled with the Applica-
tion Server, you do not have to perform this step. The IDE knows the location of
the bundled Application Server.

1. In the IDE, choose Tools→Server Manager from the main window.
2. Click Add Server. Select Sun Java Systems Application Server 8.1 and

give a name to the instance. Then click Next.
3. Specify the installation directory of the application server (for example,

C:\Sun\Appserver) and click Next.
4. Select the location of a local instance of the application server from the

Location combo box.
5. Optionally, enter your administrator username and password. If you do not

want to store the username and password in your IDE user directory, you
can leave these fields blank. The IDE will prompt you every time it needs
the information. Note that the default admin password is adminadmin.

Starting and Stopping the Application Server
To start and stop the Application Server, you can use the IDE. To start the Appli-
cation Server, open the IDE, go to the Runtime window (Ctrl-5), expand the
Servers node, right-click the Application Server’s node, and choose Start/Stop
Server. In the Server Status dialog box, click Start Server.

A domain is a set of one or more Application Server instances managed by one
administration server. Associated with a domain are the following:

• The Application Server’s port number. The default is 8080.
• The administration server’s port number. The default is 4848.
• An administration user name and password.

You specify these values when you install the Application Server. The examples
in this tutorial assume that you choose the default ports.

With no arguments, the IDE initiates the default domain, which is domain1. The
--verbose flag causes all logging and debugging output to appear on the termi-
nal window or command prompt (it will also go into the server log, which is
located in <J2EE_HOME>/domains/domain1/logs/server.log).

STARTING THE ADMIN CONSOLE 25
After the server has completed its startup sequence, you will see the following
output in the IDE’s Output window:

Domain domain1 started.

To stop the Application Server, click Stop Server in the Server Status dialog
box.When the server has stopped you will see the following output in the IDE’s
Output window:

Domain domain1 stopped.

Starting the Admin Console
To administer the Application Server and manage users, resources, and J2EE
applications, you use the Admin Console tool. The Application Server must be
running before you invoke the Admin Console. To start the Admin Console,
open the IDE, go to the Runtime window (Ctrl-5), expand the Servers node,
right-click the node for the Application Server, and choose View Admin Con-
sole.

Starting and Stopping the PointBase Database
Server
The Application Server includes an evaluation copy of the PointBase database.

To start the PointBase database server, open the IDE and choose Tools→Point-
base Database→Start Local Pointbase Database from the main menu.

For information about the PointBase database included with the Application
Server see the PointBase web site at www.pointbase.com.

Debugging J2EE Applications
This section describes how to determine what is causing an error in your applica-
tion deployment or execution.

http://www.pointbase.com

26 OVERVIEW
Using the Server Log
One way to debug applications is to look at the server log in <J2EE_HOME>/
domains/domain1/logs/server.log. The log contains output from the Appli-
cation Server and your applications. You can log messages from any Java class
in your application with System.out.println and the Java Logging APIs (doc-
umented at http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/
index.html) and from web components with the ServletContext.log method.

You can also view the Server Log in the IDE. Open the IDE, go to the Runtime
window (Ctrl-5), expand the Servers node, right-click the node for the Applica-
tion Server, and choose View Server Log.

If you start the Application Server with the --verbose flag, all logging and
debugging output will appear on the terminal window or command prompt and
the server log. If you start the Application Server in the background, debugging
information is only available in the log. You can view the server log with a text
editor or with the Admin Console log viewer. To use the log viewer:

1. Select the Application Server node.
2. Select the Logging tab.
3. Click the Open Log Viewer button. The log viewer will open and display

the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

Using the NetBeans Debugger
The IDE uses the Sun Microsystems JPDA debugger to debug your programs.
When you start a debugging session, all of the relevant debugger windows
appear automatically at the bottom of your screen. You can debug an entire
project, any executable class, and any JUnit tests. The IDE also lets you debug
applications that are running on a remote machine by attaching the debugger to
the application process.

When you run or debug web applications, JSP pages, or servlets, you can also
use the HTTP Monitor to monitor data flow. The HTTP Monitor appears by
default. The HTTP Monitor gathers data about HTTP requests that the servlet
engine processes. For each HTTP request that the engine processes, the monitor

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)

DEBUGGING J2EE APPLICATIONS 27
records data about the incoming request, the data states maintained on the server,
and the servlet context. You can view data, store data for future sessions, and
replay and edit previous requests.

When you start a debugging session in the IDE, the IDE compiles the files that
you are debugging, runs them in debug mode, and displays debugger output in
the Debugger windows. To start a debugging session, select the file that you
want to debug and choose one of the following commands from the Run menu:

• Debug Main Project (F5). Runs the main project until the first breakpoint
is encountered.

• Step Into (F7). Starts running the main project's main class and stops at the
first executable statement.

• Run to Cursor (F4). Starts a debugging session, runs the application to the
cursor location in the Source Editor, and pauses the application.

4.

28 OVERVIEW

2

29
Building Web Services
with JAX-RPC

JAX-RPC stands for Java API for XML-based RPC. JAX-RPC is a technology
for building web services and clients that use remote procedure calls (RPC) and
XML. Often used in a distributed client-server model, an RPC mechanism
enables clients to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines the envelope structure, encoding
rules, and conventions for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages (XML files) over
HTTP.

Although SOAP messages are complex, the JAX-RPC API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy (a local object representing the service) and then simply invokes methods
on the proxy. With JAX-RPC, the developer does not generate or parse SOAP
messages. It is the JAX-RPC runtime system that converts the API calls and
responses to and from SOAP messages.

With JAX-RPC, clients and web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a web service that is not running on the

30 BUILDING WEB SERVICES WITH JAX-RPC
Java platform, and vice versa. This flexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTP, SOAP,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

Setting the Port
Several files in the JAX-RPC examples depend on the port that you specified
when you installed the Sun Java System Application Server Platform Edition
8.1. The tutorial examples assume that the server runs on the default port, 8080.
If you have changed the port, you must update the port number in the following
files before building and running the JAX-RPC examples:

• <INSTALL>/j2eetutorial14/examples/jaxrpc/staticstub/src/
conf/Hello-staticclient-config.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/dynamicproxy/src/
conf/Hello-dynamicclient-config.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/webcli-
ent/nbproject/project.xml

As explained earlier, you need to register the Sun Java System Application
Server Platform Edition 8.1 in the IDE before going any further with this chap-
ter.

Creating a Simple Web Service and Client
with JAX-RPC

This section shows how to build, deploy, and consume a simple web service.
You will learn about two types of web service clients in this section. Both are
static-stub clients, which means that they call the web service through a stub, a
local object that acts as a proxy for the remote service. The difference between
the two clients in this section is that one is portable, because it adheres to the
J2EE 1.4 specification, while the other is not. A later section, Web Service
Clients (page 43), provides examples of additional JAX-RPC clients that access
the service. The code for the service is in <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/helloservice. The portable client is in
<INSTALL>/j2eetutorial14/examples/jaxrpc/webclient and the client that

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 31
is implementation-specific is in <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/staticstub.

Figure 2–1 illustrates how JAX-RPC technology manages communication
between a web service and client.

Figure 2–1 Communication Between a JAX-RPC Web Service and a Client

The starting point for developing a JAX-RPC web service is the service endpoint
interface. A service endpoint interface (SEI) is a Java interface that declares the
methods that a client can invoke on the service.

You run the wscompile tool from the IDE to process the SEI and two configura-
tion files. Doing so generates the WSDL specification of the web service and the
stubs that connect a web service client to the JAX-RPC runtime. For reference
documentation on wscompile, see the Application Server man pages at
http://docs.sun.com/db/doc/817-6092.

Together, the wscompile tool, the IDE, and the Application Server provide the
Application Server’s implementation of JAX-RPC.

These are the basic steps for creating the web service and client in the IDE:

1. Generate the SEI, the implementation class, and the interface configura-
tion file. Code the implementation class.

2. Compile the SEI and implementation class. During this step, the wscom-
pile tool is called from the IDE to generate the files required to deploy the
service.

3. Package and deploy the WAR file. The tie classes (which are used to com-
municate with clients) are generated by the Application Server during
deployment.

http://docs.sun.com/db/doc/817-6092

32 BUILDING WEB SERVICES WITH JAX-RPC
4. Generate and code the client class and WSDL configuration file.
5. Compile the client class. During this step, the wscompile tool is called

from the IDE to generate and compile the stub files.
6. Package and run the client class.

The sections that follow cover these steps in greater detail.

Generating and Coding the Service Endpoint
Interface and Implementation Class
In this example, the service endpoint interface declares a single method named
sayHello. This method returns a string that is the concatenation of the string
Hello with the method parameter.

A service endpoint interface must conform to a few rules:

• It extends the java.rmi.Remote interface.
• It must not have constant declarations, such as public final static.
• The methods must throw the java.rmi.RemoteException or one of its

subclasses. (The methods may also throw service-specific exceptions.)
• Method parameters and return types must be supported JAX-RPC types

(see Types Supported by JAX-RPC, page 42).

To generate the SEI, the implementation class, and the interface configuration
file, use the IDE as follows:

1. Choose File→New Project. In the Categories tree, choose Web. Under
Projects, choose Web Application. Click Next.

2. In the Project Name field, type helloservice. In the Project Location
field, browse to the location where all your projects are stored. In the
Server field, make sure that the Sun Java System Application Server Plat-
form Edition is selected. (If the Sun Java System Application Server is not
available in the Server field, you need to register it in the IDE. Choose
Tools→Server Manager to do so.) Click Finish.

3. Right-click helloservice in the Projects window. Choose New→Web
Service. In the Web Service Name field, type Hello. In the Package field,
type helloservice. Click Finish.

4. Expand the Web Services node in the Projects window, right-click the
Hello node, and choose Add Operation. In the Name field, type say-
Hello. In the Return Type field, choose String.

BUILDING THE SERVICE 33
5. Click Add. Leave the Type as String. In the Name field, type s. Click OK
and then click OK again.

6. Add public String message = "Hello "; below the HelloImpl class
declaration.

7. Implement the sayHello operation by replacing the default return null
with return message + s.

Expand the Source Packages node in the Projects window. Then expand the hel-
loservice package node. In this example, the service endpoint interface that the
IDE generates for you is named HelloSEI. Double-click it in the Projects win-
dow to view it in the Source Editor:

package helloservice;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloSEI extends Remote {
 public String sayHello(String s) throws RemoteException;
}

In addition to the interface, you’ll need the class that implements the interface. In
this example, the implementation class is called HelloImpl. Double-click it in
the Projects window to view it in the Source Editor:

package helloservice;

public class HelloImpl implements HelloSEI {

 public String message ="Hello";

 public String sayHello(String s) {
 return message + s;
 }
}

Building the Service
To build the helloservice, right-click the node in the Projects window and
choose Build Project. The Build Project command executes several subtasks in
your Ant build script, the most important of which are the following:

• compile

• Hello_wscompile

34 BUILDING WEB SERVICES WITH JAX-RPC
• dist

The compile Task
This task compiles HelloSEI.java and HelloImpl.java, writing the class files
to the build/web/WEB-INF/classes subdirectory, which you can view in the
Files window (Ctrl-2).

The Hello_wscompile Task
The Hello_wscompile task runs wscompile, which creates the WSDL and map-
ping files. You can view them by going to the build/web/WEB-INF subdirectory
and the build/web/WEB-INF/wsdl subdirectory in the Files window. The
WSDL file describes the web service and is used to generate the client stubs for
Static Stub Clients. The mapping file contains information that correlates the
mapping between the Java interfaces and the WSDL definition. It is meant to be
portable so that any J2EE-compliant deployment tool can use this information,
along with the WSDL file and the Java interfaces, to generate stubs and ties for
the deployed web services.

The files created in this example are Hello.wsdl and Hello-mapping.xml. The
Hello_wscompile task runs wscompile with the following main arguments:

wscompile
define="true"
nonClassDir="${build.web.dir.real}/WEB-INF/wsdl"
mapping="${build.web.dir.real}/WEB-INF/${Hello.mapping}"
config="${src.dir}/${Hello.config.name}"
features="${wscompile.service.Hello.features}"
sourceBase="${build.generated.dir}/wsservice"

The define option instructs wscompile to create WSDL and mapping files. The
mapping option specifies the mapping file name. The other options specify vari-
ous properties that are set in the nbproject/project.properties file. The
wscompile tool reads an interface configuration file that specifies information
about the SEI. In this example, the configuration file is named Hello-con-
fig.xml and contains the following:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<service

name="Hello" targetNamespace="urn:Hello/wsdl"

BUILDING THE SERVICE 35
typeNamespace="urn:Hello/types"
packageName="helloservice">

<interface name="helloservice.HelloSEI"
servantName='helloservice.HelloImpl'</interface>

</service>
</configuration>

This configuration file tells wscompile to create a WSDL file named
Hello.wsdl with the following information:

• The service name is Hello.
• The WSDL target is urn:Hello/wsdl and the type namespace is

urn:Hello/types. The choice for what to use for the namespaces is up to you.
The role of the namespaces is similar to the use of Java package names—
to distinguish names that might otherwise conflict. For example, a com-
pany can decide that all its Java code should be in the package
com.wombat.*. Similarly, it can also decide to use the namespace
http://wombat.com.

• The SEI is helloservice.HelloSEI.

The packageName attribute instructs wscompile to put the service classes into
the helloservice package.

The dist Task
This task packages the service and the deployment descriptor into a WAR file in
the dist folder, which you can view in the Files window.

Specifying the Endpoint Address
To access helloservice, the tutorial clients will specify this service endpoint
address URI:

http://localhost:8080/helloservice/Hello

The /helloservice string is the context root of the servlet that implements the
service. The /Hello string is the servlet alias. You already set the context root
when you created the web application above. To specify the endpoint address,
set the alias as follows:

1. Right-click the project node, choose Properties, and then click Run in the
Project Properties dialog box.

36 BUILDING WEB SERVICES WITH JAX-RPC
2. In the Relative URL field, type /Hello.

Deploying the Service
In the IDE, perform these steps:

1. In the main menu, choose Tools→Setup Wizard. Select your favorite
browser in the Web Browser drop-down and click Finish.

2. In the Projects window, right-click helloservice and choose Run Project.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/Hello?WSDL in a web browser. Now
you are ready to create a client that accesses this service.

Undeploying the Service
At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by expanding the Servers node
in the Runtime window, then the node for the server, then right-click the node for
the service, and choose Undeploy.

Static Stub Clients
You will create a stand-alone program that calls the sayHello method of the
helloservice. It makes this call through a stub, a local object that acts as a
proxy for the remote service. Because the stub is created by wscompile at devel-
opment time (as opposed to runtime), it is usually called a static stub. You can
run wscompile from the IDE to generate the stub in one of two ways:

• J2EE Container-Generated
This stub is created by the server, using information gleaned from deploy-
ment descriptors generated in the IDE.

• IDE-Generated
This stub is created manually in the IDE. As a result, it is implementation-
specific, as discussed later in this chapter.

STATIC STUB CLIENTS 37
J2EE Container-Generated Static Stub Client
To generate the static stub client, use the IDE as follows:

1. Choose File→New Project. Under Categories, choose Web. Under
Projects, choose Web Application. Click Next.

2. In the Project Name field, type HelloClientProject. In the Project Loca-
tion field, browse to the location where all your projects are stored. In the
Server field, make sure that the Sun Java System Application Server Plat-
form Edition 8.1 is selected. Click Finish.

3. Right-click HelloClientProject in the Projects window. Choose
New→Web Service Client. In the WSDL URL field, specify the URL to
the web service:

http://localhost:8080/helloservice/Hello?WSDL

4. Click Retrieve WSDL to test the location. If the WSDL name is returned,
the test has succeeded. In the Package field, type helloclientservice. In
the Web Service Client Type list, choose J2EE Container- Generated Static
Stub.

5. Right-click the HelloClientProject node and choose New→Servlet. In
the Name field, type HelloServlet. In the Package field, type webcli-
ent. Click Next and click Finish.

6. Right-click within the processRequest method and choose Web Service
Client Resources→Call Web Service Operation. Choose the sayHello
operation and click OK. Now fill out the skeleton code so that the content
of its <body> tags looks as follows:

out.println("<body>");
String username = request.getParameter("username");
if (username != null && username.length() > 0) {

try {
out.println("");
out.println("<h2>");
out.println(getHelloSEIPort().sayHello(username));
out.println("</h2>");

} catch(java.rmi.RemoteException ex) {
ex.printStackTrace(out);
}

} else {

38 BUILDING WEB SERVICES WITH JAX-RPC
out.println("You didn't specify your name.
");
}
out.println("back");
out.println("</body>");

7. Expand the project’s Web Pages node, double-click the default index.jsp file,
and replace the <body> tags with the following code:

 <body bgcolor="white">

<h2>Hello, my name is Duke. What's yours?</h2>
<form method="get" action="HelloServlet">

<input type="text" name="username" size="25">

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>
</body>

8. Go to <INSTALL>/j2eetutorial14/examples/jaxrpc/webclient/web
and copy the duke.waving.gif file into your project’s web directory.

Building and Deploying the Static Stub Client
In the IDE, perform these steps:

1. In the Projects window, right-click the project node.
2. Choose Run Project.

This task invokes the web service client. When you run this task, the browser
opens, the application is displayed, and you can submit a name, and a greeting is
returned.

IDE-Generated Static Stub Client
To build, package, and run the client, follow these steps:

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/jaxrpc/staticstub/, select the
project, and choose Open Project.

2. The project prompts you to set up a library named “jax-rpc”. The library
should contain JAR files that are needed by the project. Right-click the
project and choose Resolve Reference Problems. Click Resolve. Click
New Library and name the library jax-rpc. Click Add JAR/Folder and

STATIC STUB CLIENTS 39
navigate to the lib directory in your application server installation. Select
activation.jar, dom.jar, j2ee.jar, jaxrpc-api.jar, jaxrpc-

impl.jar, jhall.jar, mail.jar, saaj-impl.jar, xercesImpl.jar

and click OK.
3. In the Projects window, right-click the project and choose Run Project. The

IDE builds, packages, and runs the project.
4. In the Output window, the client displays the following output:

Hello Duke!

Before it can invoke the remote methods on the stub, the client performs these
steps:

1. Creates a Stub object:
(Stub)(new Hello_Impl().getHelloSEIport())

The code in this method is implementation-specific because it relies on a
Hello_Impl object, which is not defined in the specifications. The
Hello_Impl class will be generated by wscompile in the following sec-
tion.

2. Sets the endpoint address that the stub uses to access the service:
stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

At runtime, the endpoint address is passed to HelloClient in args[0] as
a command-line parameter, which the IDE gets from the end-

point.address property in the build.properties file. This address
must match the one you set for the service in Specifying the Endpoint
Address (page 35).

3. Casts stub to the service endpoint interface, HelloSEI:

HelloSEI hello = (HelloSEI)stub;

Here is the full source code listing for the HelloClient.java file, which is
located in the directory <INSTALL>/j2eetutorial14/examples/jaxrpc/stat-
icstub/src/:

package staticstub;

import javax.xml.rpc.Stub;

public class HelloClient {

 private String endpointAddress;

40 BUILDING WEB SERVICES WITH JAX-RPC
 public static void main(String[] args) {

 System.out.println("Endpoint address = " + args[0]);
 try {
 Stub stub = createProxy();
 stub._setProperty
 (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
 args[0]);
 HelloSEI hello = (HelloSEI)stub;
 System.out.println(hello.sayHello("Duke!"));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
 // Note: Hello_Impl is implementation-specific.
 return
 (Stub) (new Hello_Impl().getHelloSEIPort());
 }
}

Building the Static Stub Client
To build the client, right-click its node in the Projects window and choose Build
Project. The Build Project command executes several subtasks in your Ant build
script, the most important of which are the following:

Running the Static Stub Client
In the IDE, perform these steps:

1. In the Projects window, right-click the project.
2. Choose Run Project.

This task invokes the web service client. When you run this task, you should get
the following output:

Hello Duke!

TYPES SUPPORTED BY JAX-RPC 41
Types Supported by JAX-RPC
Behind the scenes, JAX-RPC maps types of the Java programming language to
XML/WSDL definitions. For example, JAX-RPC maps the java.lang.String
class to the xsd:string XML data type. Application developers don’t need to
know the details of these mappings, but they should be aware that not every class
in the Java 2 Platform, Standard Edition (J2SE) can be used as a method param-
eter or return type in JAX-RPC.

J2SE SDK Classes
JAX-RPC supports the following J2SE SDK classes:

java.lang.Boolean
java.lang.Byte
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String

java.math.BigDecimal
java.math.BigInteger

java.net.URI

java.util.Calendar
java.util.Date

Primitives
JAX-RPC supports the following primitive types of the Java programming lan-
guage:

boolean
byte
double
float
int
long
short

42 BUILDING WEB SERVICES WITH JAX-RPC
Arrays
JAX-RPC also supports arrays that have members of supported JAX-RPC types.
Examples of supported arrays are int[] and String[]. Multidimensional
arrays, such as BigDecimal[][], are also supported.

Value Types
A value type is a class whose state can be passed between a client and a remote
service as a method parameter or return value. For example, in an application for
a university library, a client might call a remote procedure with a value type
parameter named Book, a class that contains the fields Title, Author, and Pub-
lisher.

To be supported by JAX-RPC, a value type must conform to the following rules:

• It must have a public default constructor.
• It must not implement (either directly or indirectly) the java.rmi.Remote

interface.
• Its fields must be supported JAX-RPC types.

The value type can contain public, private, or protected fields. The field of a
value type must meet these requirements:

• A public field cannot be final or transient.
• A nonpublic field must have corresponding getter and setter methods.

Web Service Clients
This section shows how to create and run these types of clients:

• Dynamic proxy
• Dynamic invocation interface (DII)

When you run these client examples, they will access the MyHelloService that
you deployed in Creating a Simple Web Service and Client with JAX-
RPC (page 30).

DYNAMIC PROXY CLIENT 43
Dynamic Proxy Client
The client in the preceding section uses a static stub for the proxy. In contrast,
the client example in this section calls a remote procedure through a dynamic
proxy, a class that is created during runtime. Although the source code for the
IDE-generated static stub client relies on an implementation-specific class, the
code for the dynamic proxy client does not have this limitation, just like the
J2EE container-generated static stub.

This example resides in the <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/dynamicproxy/ directory.

Coding the Dynamic Proxy Client
The HelloDProxyClient program constructs the dynamic proxy as follows:

1. Creates a Service object named helloService:
Service helloService =
 serviceFactory.createService(helloWsdlUrl,
 new QName(nameSpaceUri, serviceName));

A Service object is a factory for proxies. To create the Service object
(helloService), the program calls the createService method on
another type of factory, a ServiceFactory object.

The createService method has two parameters: the URL of the WSDL
file and a QName object. At runtime, the client gets information about the
service by looking up its WSDL. In this example, the URL of the WSDL
file points to the WSDL that was deployed with HelloService:
http://localhost:8080/helloservice/Hello?WSDL

A QName object is a tuple that represents an XML qualified name. The
tuple is composed of a namespace URI and the local part of the qualified
name. In the QName parameter of the createService invocation, the local
part is the service name, HelloService.

2. The program creates a proxy (myProxy) with a type of the service endpoint
interface (HelloSEI):

dynamicproxy.HelloSEI myProxy =
 (dynamicproxy.HelloSEI)helloService.getPort(
 new QName(nameSpaceUri, portName),
 dynamicproxy.HelloSEI.class);

44 BUILDING WEB SERVICES WITH JAX-RPC
The helloService object is a factory for dynamic proxies. To create
myProxy, the program calls the getPort method of helloService. This
method has two parameters: a QName object that specifies the port name
and a java.lang.Class object for the service endpoint interface (Hel-
loSEI). The HelloSEI class is generated by wscompile. The port name
(HelloSEIPort) is specified by the WSDL file.

Here is the listing for the HelloDProxyClient.java file, located in the
<INSTALL>/j2eetutorial14/examples/jaxrpc/dynamicproxy/src/dynam-
icproxy directory:

package dynamicproxy;

import java.net.URL;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import dynamicproxy.HelloIF;

public class HelloDProxyClient {

 public static void main(String[] args) {
 try {

 String UrlString = args[0] + "?WSDL";
 String nameSpaceUri = "urn:Hello/wsdl";
 String serviceName = "Hello";
 String portName = "HelloSEIPort";

 System.out.println("UrlString = " + UrlString);
 URL helloWsdlUrl = new URL(UrlString);

 ServiceFactory serviceFactory =
 ServiceFactory.newInstance();

 Service helloService =
 serviceFactory.createService(helloWsdlUrl,
 new QName(nameSpaceUri, serviceName));

 dynamicproxy.HelloSEI myProxy =
 (dynamicproxy.HelloSEI)
 helloService.getPort(
 new QName(nameSpaceUri, portName),
 dynamicproxy.HelloSEI.class);

 System.out.println(myProxy.sayHello("Buzz"));

DYNAMIC INVOCATION INTERFACE CLIENT 45
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Building and Running the Dynamic Proxy Client
Before performing the steps in this section, you must first create and deploy
HelloService as described in Creating a Simple Web Service and Client with
JAX-RPC (page 30).

To build, package, and run the client, follow these steps:

1. If you have not already opened the dynamicproxy project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/jaxrpc/dynamicproxy/, select
the project, and choose Open Project Folder.

2. If you have not already created the JAX-RPC library, the project prompts
you to set it up. The library should contain JAR files that are needed by the
project. Right-click the project and choose Resolve Reference Problems.
Click Resolve. Click New Library and name the library jax-rpc. Click
Add JAR/Folder and navigate to the lib directory in your application
server installation. Select activation.jar, dom.jar, j2ee.jar,

jaxrpc-api.jar, jaxrpc-impl.jar, jhall.jar, mail.jar, saaj-

impl.jar, xercesImpl.jar and click OK. Click Close.
3. In the Projects window, right-click the project and choose Run Project. The

IDE builds, packages, and runs the project.
4. In the Output window, the client displays the following output:

Hello Buzz

Dynamic Invocation Interface Client
With the dynamic invocation interface (DII), a client can call a remote procedure
even if the signature of the remote procedure or the name of the service is
unknown until runtime. In contrast to a static stub or dynamic proxy client, a DII
client does not require runtime classes generated by wscompile. However, as
you’ll see in the following section, the source code for a DII client is more com-
plicated than the code for the other two types of clients.

46 BUILDING WEB SERVICES WITH JAX-RPC
This example is for advanced users who are familiar with WSDL documents.
(See Further Information, page 51.)

This example resides in the <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/diiclient/ directory.

Coding the DII Client
The HelloDIIClient program performs these steps:

1. Creates a Service object:
Service service =
 factory.createService(new QName(qnameService));

To get a Service object, the program invokes the createService method
of a ServiceFactory object. The parameter of the createService
method is a QName object that represents the name of the service, Hello.
The WSDL file specifies this name as follows:
<service name="Hello">

2. From the Service object, creates a Call object:
QName port = new QName(qnamePort);
Call call = service.createCall(port);

A Call object supports the dynamic invocation of the remote procedures
of a service. To get a Call object, the program invokes the Service
object’s createCall method. The parameter of createCall is a QName
object that represents the service endpoint interface, HelloSEI. In the
WSDL file, the name of this interface is designated by the portType ele-
ment:
 <portType name="HelloSEI">

3. Sets the service endpoint address on the Call object:
call.setTargetEndpointAddress(args[0]);

In the WSDL file, this address is specified by the <soap:address> ele-
ment.

4. Sets these properties on the Call object:
SOAPACTION_USE_PROPERTY
SOAPACTION_URI_PROPERTY
ENCODING_STYLE_PROPERTY

To learn more about these properties, refer to the SOAP and WSDL docu-
ments listed in Further Information (page 51).

DYNAMIC INVOCATION INTERFACE CLIENT 47
5. Specifies the method’s return type, name, and parameter:
QName QNAME_TYPE_STRING = new QName(NS_XSD, "string");
call.setReturnType(QNAME_TYPE_STRING);

call.setOperationName(new QName(BODY_NAMESPACE_VALUE,
 "sayHello"));

call.addParameter("String_1", QNAME_TYPE_STRING,
 ParameterMode.IN);

To specify the return type, the program invokes the setReturnType
method on the Call object. The parameter of setReturnType is a QName
object that represents an XML string type.

The program designates the method name by invoking the setOpera-
tionName method with a QName object that represents sayHello.

To indicate the method parameter, the program invokes the addParame-
ter method on the Call object. The addParameter method has three
arguments: a String for the parameter name (String_1), a QName object
for the XML type, and a ParameterMode object to indicate the passing
mode of the parameter (IN).

6. Invokes the remote method on the Call object:

String[] params = { "Murphy" };
String result = (String)call.invoke(params);

The program assigns the parameter value (Murphy) to a String array
(params) and then executes the invoke method with the String array as
an argument.

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutorial14/examples/jaxrpc/dii/src/ directory:

package diiclient;

import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

public class HelloDIIClient {

 private static String qnameService = "Hello";
 private static String qnamePort = "HelloSEI";

48 BUILDING WEB SERVICES WITH JAX-RPC
 private static String BODY_NAMESPACE_VALUE =
 "urn:Hello/wsdl";
 private static String ENCODING_STYLE_PROPERTY =
 "javax.xml.rpc.encodingstyle.namespace.uri";
 private static String NS_XSD =
 "http://www.w3.org/2001/XMLSchema";
 private static String URI_ENCODING =
 "http://schemas.xmlsoap.org/soap/encoding/";

 public static void main(String[] args) {

 System.out.println("Endpoint address = " + args[0]);

 try {
 ServiceFactory factory =
 ServiceFactory.newInstance();
 Service service =
 factory.createService(
 new QName(qnameService));

 QName port = new QName(qnamePort);

 Call call = service.createCall(port);
 call.setTargetEndpointAddress(args[0]);

 call.setProperty(Call.SOAPACTION_USE_PROPERTY,
 new Boolean(true));
 call.setProperty(Call.SOAPACTION_URI_PROPERTY
 "");
 call.setProperty(ENCODING_STYLE_PROPERTY,
 URI_ENCODING);
 QName QNAME_TYPE_STRING =
 new QName(NS_XSD, "string");
 call.setReturnType(QNAME_TYPE_STRING);

 call.setOperationName(
 new QName(BODY_NAMESPACE_VALUE,"sayHello"));
 call.addParameter("String_1", QNAME_TYPE_STRING,
 ParameterMode.IN);
 String[] params = { "Murph!" };

 String result = (String)call.invoke(params);
 System.out.println(result);

 } catch (Exception ex) {

WEB SERVICES INTEROPERABILITY AND JAX-RPC 49
 ex.printStackTrace();
 }
 }
}

Building and Running the DII Client
Before performing the steps in this section, you must first create and deploy
HelloService as described in Creating a Simple Web Service and Client with
JAX-RPC (page 30).

To build, package, and run the client, follow these steps:

1. If you have not already opened the DIIClient project, choose File→Open
Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/jaxrpc/diiclient/, select the
project, and choose Open Project.

2. If you have not already created the JAX-RPC library, the project prompts
you to set it up. The library should contain JAR files that are needed by the
project. Right-click the project and choose Resolve Reference Problems.
Click Resolve. Click New Library and name the library jax-rpc. Click
Add JAR/Folder and navigate to the lib directory in your application
server installation. Select activation.jar, dom.jar, j2ee.jar,

jaxrpc-api.jar, jaxrpc-impl.jar, jhall.jar, mail.jar, saaj-

impl.jar, xercesImpl.jar and click OK. Click Close.
3. In the Projects window, right-click the project and choose Run Project. The

IDE builds, packages, and runs the project.
4. In the Output window, the client displays the following output:

Hello Murph!

Web Services Interoperability and JAX-
RPC

JAX-RPC 1.1 supports the Web Services Interoperability (WS-I) Basic Profile
Version 1.0, Working Group Approval Draft. The WS-I Basic Profile is a docu-
ment that clarifies the SOAP 1.1 and WSDL 1.1 specifications in order to pro-
mote SOAP interoperability. For links related to WS-I, see Further
Information (page 51).

50 BUILDING WEB SERVICES WITH JAX-RPC
To support WS-I, JAX-RPC has the following features:

• When run with the -f:wsi option, wscompile verifies that a WSDL is WS-
I-compliant or generates classes needed by JAX-RPC services and clients
that are WS-I-compliant.

• The JAX-RPC runtime supports doc/literal and rpc/literal encodings for
services, static stubs, dynamic proxies, and DII.

You can set these properties by right-clicking a project, choosing Properties, and
clicking Web Services or web Service Clients.

Further Information
For more information about JAX-RPC and related technologies, refer to the fol-
lowing:

• Java API for XML-based RPC 1.1 specification
http://java.sun.com/xml/downloads/jaxrpc.html

• JAX-RPC home
http://java.sun.com/xml/jaxrpc/

• Simple Object Access Protocol (SOAP) 1.1 W3C Note
http://www.w3.org/TR/SOAP/

• Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.org/TR/wsdl

• WS-I Basic Profile 1.0
http://www.ws-i.org

http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

3

53
SOAP with Attachments
API for Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP
messaging that goes on behind the scenes in JAX-RPC and JAXR implementa-
tions. Secondarily, it is an API that developers can use when they choose to write
SOAP messaging applications directly rather than use JAX-RPC. The SAAJ API
allows you to do XML messaging from the Java platform: By simply making
method calls using the SAAJ API, you can read and write SOAP-based XML
messages, and you can optionally send and receive such messages over the Inter-
net (some implementations may not support sending and receiving). This chapter
will help you learn how to use the SAAJ API.

The SAAJ API conforms to the Simple Object Access Protocol (SOAP) 1.1
specification and the SOAP with Attachments specification. The SAAJ 1.2 spec-
ification defines the javax.xml.soap package, which contains the API for creating
and populating a SOAP message. This package has all the API necessary for
sending request-response messages. (Request-response messages are explained
in SOAPConnection Objects, page 58.)

Note: The javax.xml.messaging package, defined in the Java API for XML Messaging
(JAXM) 1.1 specification, is not part of the J2EE 1.4 platform and is not discussed
in this chapter. The JAXM API is available as a separate download from http://
java.sun.com/xml/jaxm/.

http://java.sun.com/xml/jaxm/
http://java.sun.com/xml/jaxm/

54 SOAP WITH ATTACHMENTS API FOR JAVA
This chapter starts with an overview of messages and connections, giving some
of the conceptual background behind the SAAJ API to help you understand why
certain things are done the way they are. Next, the tutorial shows you how to use
the basic SAAJ API, giving examples and explanations of the commonly used
features. The code examples in the last part of the tutorial show you how to build
an application.

Overview of SAAJ
This section presents a high-level view of how SAAJ messaging works and
explains concepts in general terms. Its goal is to give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at SAAJ from two perspectives: messages and connections.

Messages
SAAJ messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the SAAJ API, you can create XML messages that conform to the SOAP
1.1 and WS-I Basic Profile 1.0 specifications simply by making Java API calls.

The Structure of an XML Document
An XML document has a hierarchical structure made up of elements, subele-
ments, subsubelements, and so on. You will notice that many of the SAAJ
classes and interfaces represent XML elements in a SOAP message and have the
word element or SOAP (or both) in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which is the base class for all the classes and interfaces that repre-
sent XML elements in a SOAP message. There are also methods such as
SOAPElement.addTextNode, Node.detachNode, and Node.getValue, which you will see
how to use in the tutorial section.

MESSAGES 55
What Is in a Message?
The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments
The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, all the parts listed are required
to be in every SOAP message.

I. SOAP message

A. SOAP part

1. SOAP envelope

a. SOAP header (optional)

b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message, the
SOAPPart class to represent the SOAP part, the SOAPEnvelope interface to represent
the SOAP envelope, and so on. Figure 3–1 illustrates the structure of a SOAP
message with no attachments.

Note: Many SAAJ API interfaces extend DOM interfaces. In a SAAJ message, the
SOAPPart class is also a DOM document. See SAAJ and DOM (page 58) for details.

When you create a new SOAPMessage object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage
object has a SOAPPart object that contains a SOAPEnvelope object. The SOAPEnve-
lope object in turn automatically contains an empty SOAPHeader object followed
by an empty SOAPBody object. If you do not need the SOAPHeader object, which is
optional, you can delete it. The rationale for having it automatically included is
that more often than not you will need it, so it is more convenient to have it pro-
vided.

The SOAPHeader object can include one or more headers that contain metadata
about the message (for example, information about the sending and receiving
parties). The SOAPBody object, which always follows the SOAPHeader object if
there is one, contains the message content. If there is a SOAPFault object (see
Using SOAP Faults, page 80), it must be in the SOAPBody object.

56 SOAP WITH ATTACHMENTS API FOR JAVA
Figure 3–1 SOAPMessage Object with No Attachments

Messages with Attachments
A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part must contain only XML content; as a result, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So if, for example, you want your message to contain a binary file, your
message must have an attachment part for it. Note that an attachment part can
contain any kind of content, so it can contain data in XML format as well. Figure
3–2 shows the high-level structure of a SOAP message that has two attachments.

MESSAGES 57
Figure 3–2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJ API provides the AttachmentPart class to represent an attachment part of
a SOAP message. A SOAPMessage object automatically has a SOAPPart object and
its required subelements, but because AttachmentPart objects are optional, you
must create and add them yourself. The tutorial section walks you through creat-
ing and populating messages with and without attachment parts.

58 SOAP WITH ATTACHMENTS API FOR JAVA
If a SOAPMessage object has one or more attachments, each AttachmentPart object
must have a MIME header to indicate the type of data it contains. It may also
have additional MIME headers to identify it or to give its location. These head-
ers are optional but can be useful when there are multiple attachments. When a
SOAPMessage object has one or more AttachmentPart objects, its SOAPPart object
may or may not contain message content.

SAAJ and DOM
In SAAJ 1.2, the SAAJ APIs extend their counterparts in the org.w3c.dom pack-
age:

• The Node interface extends the org.w3c.dom.Node interface.
• The SOAPElement interface extends both the Node interface and the

org.w3c.dom.Element interface.
• The SOAPPart class implements the org.w3c.dom.Document interface.
• The Text interface extends the org.w3c.dom.Text interface.

Moreover, the SOAPPart of a SOAPMessage is also a DOM Level 2 Document and
can be manipulated as such by applications, tools, and libraries that use DOM.
For details on how to use DOM documents with the SAAJ API, see Adding Con-
tent to the SOAPPart Object (page 70) and Adding a Document to the SOAP
Body (page 71).

Connections
All SOAP messages are sent and received over a connection. With the SAAJ
API, the connection is represented by a SOAPConnection object, which goes from
the sender directly to its destination. This kind of connection is called a point-to-
point connection because it goes from one endpoint to another endpoint. Mes-
sages sent using the SAAJ API are called request-response messages. They are
sent over a SOAPConnection object with the call method, which sends a message (a
request) and then blocks until it receives the reply (a response).

SOAPConnection Objects
The following code fragment creates the SOAPConnection object connection and
then, after creating and populating the message, uses connection to send the mes-
sage. As stated previously, all messages sent over a SOAPConnection object are

TUTORIAL 59
sent with the call method, which both sends the message and blocks until it
receives the response. Thus, the return value for the call method is the SOAPMes-
sage object that is the response to the message that was sent. The request parameter
is the message being sent; endpoint represents where it is being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection = factory.createConnection();

. . .// create a request message and give it content

java.net.URL endpoint =
new URL("http://fabulous.com/gizmo/order");

SOAPMessage response = connection.call(request, endpoint);

Note that the second argument to the call method, which identifies where the
message is being sent, can be a String object or a URL object. Thus, the last two
lines of code from the preceding example could also have been the following:

String endpoint = "http://fabulous.com/gizmo/order";
SOAPMessage response = connection.call(request, endpoint);

A web service implemented for request-response messaging must return a
response to any message it receives. The response is a SOAPMessage object, just as
the request is a SOAPMessage object. When the request message is an update, the
response is an acknowledgment that the update was received. Such an acknowl-
edgment implies that the update was successful. Some messages may not require
any response at all. The service that gets such a message is still required to send
back a response because one is needed to unblock the call method. In this case,
the response is not related to the content of the message; it is simply a message to
unblock the call method.

Now that you have some background on SOAP messages and SOAP connec-
tions, in the next section you will see how to use the SAAJ API.

Tutorial
This tutorial walks you through how to use the SAAJ API. First, it covers the
basics of creating and sending a simple SOAP message. Then you will learn
more details about adding content to messages, including how to create SOAP
faults and attributes. Finally, you will learn how to send a message and retrieve

60 SOAP WITH ATTACHMENTS API FOR JAVA
the content of the response. After going through this tutorial, you will know how
to perform the following tasks:

• Creating and sending a simple message
• Adding content to the header
• Adding content to the SOAPPart object
• Adding a document to the SOAP body
• Manipulating message content using SAAJ or DOM APIs
• Adding attachments
• Adding attributes
• Using SOAP faults

In the section Code Examples (page 85), you will see the code fragments from
earlier parts of the tutorial in runnable applications, which you can test yourself.

A SAAJ client can send request-response messages to web services that are
implemented to do request-response messaging. This section demonstrates how
you can do this.

Creating and Sending a Simple Message
This section covers the basics of creating and sending a simple message and
retrieving the content of the response. It includes the following topics:

• Creating a message
• Parts of a message
• Accessing elements of a message
• Adding content to the body
• Getting a SOAPConnection object
• Sending a message
• Getting the content of a message

Creating a Message
The first step is to create a message using a MessageFactory object. The SAAJ API
provides a default implementation of the MessageFactory class, thus making it easy

CREATING AND SENDING A SIMPLE MESSAGE 61
to get an instance. The following code fragment illustrates getting an instance of
the default message factory and then using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

As is true of the newInstance method for SOAPConnectionFactory, the newInstance
method for MessageFactory is static, so you invoke it by calling MessageFac-
tory.newInstance.

Parts of a Message
A SOAPMessage object is required to have certain elements, and, as stated previ-
ously, the SAAJ API simplifies things for you by returning a new SOAPMessage
object that already contains these elements. So message, which was created in the
preceding line of code, automatically has the following:

I. A SOAPPart object that contains

A. A SOAPEnvelope object that contains

 1. An empty SOAPHeader object

 2. An empty SOAPBody object

The SOAPHeader object is optional and can be deleted if it is not needed. How-
ever, if there is one, it must precede the SOAPBody object. The SOAPBody object
can hold either the content of the message or a fault message that contains status
information or details about a problem with the message. The section Using
SOAP Faults (page 80) walks you through how to use SOAPFault objects.

Accessing Elements of a Message
The next step in creating a message is to access its parts so that content can be
added. There are two ways to do this. The SOAPMessage object message, created in
the preceding code fragment, is the place to start.

The first way to access the parts of the message is to work your way through the
structure of the message. The message contains a SOAPPart object, so you use the
getSOAPPart method of message to retrieve it:

SOAPPart soapPart = message.getSOAPPart();

62 SOAP WITH ATTACHMENTS API FOR JAVA
Next you can use the getEnvelope method of soapPart to retrieve the SOAPEnvelope
object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use the getHeader and getBody methods of envelope to retrieve its
empty SOAPHeader and SOAPBody objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message
header and body directly, without retrieving the SOAPPart or SOAPEnvelope. To do
so, use the getSOAPHeader and getSOAPBody methods of SOAPMessage:

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can delete it.
(You will see more about headers later.) Because all SOAPElement objects, includ-
ing SOAPHeader objects, are derived from the Node interface, you use the method
Node.detachNode to delete header.

header.detachNode();

Adding Content to the Body
The SOAPBody object contains either content or a fault. To add content to the
body, you normally create one or more SOAPBodyElement objects to hold the con-
tent. You can also add subelements to the SOAPBodyElement objects by using the
addChildElement method. For each element or child element, you add content by
using the addTextNode method.

When you create any new element, you also need to create an associated Name
object so that it is uniquely identified. One way to create Name objects is by using
SOAPEnvelope methods, so you can use the envelope variable from the earlier code
fragment to create the Name object for your new element. Another way to create
Name objects is to use SOAPFactory methods, which are useful if you do not have
access to the SOAPEnvelope.

Note: The SOAPFactory class also lets you create XML elements when you are not
creating an entire message or do not have access to a complete SOAPMessage object.

CREATING AND SENDING A SIMPLE MESSAGE 63
For example, JAX-RPC implementations often work with XML fragments rather
than complete SOAPMessage objects. Consequently, they do not have access to a
SOAPEnvelope object, and this makes using a SOAPFactory object to create Name objects
very useful. In addition to a method for creating Name objects, the SOAPFactory class
provides methods for creating Detail objects and SOAP fragments. You will find an
explanation of Detail objects in Overview of SOAP Faults (page 80) and Creating
and Populating a SOAPFault Object (page 82).

Name objects associated with SOAPBodyElement or SOAPHeaderElement objects must
be fully qualified; that is, they must be created with a local name, a prefix for the
namespace being used, and a URI for the namespace. Specifying a namespace
for an element makes clear which one is meant if more than one element has the
same local name.

The following code fragment retrieves the SOAPBody object body from message,
uses a SOAPFactory to create a Name object for the element to be added, and adds a
new SOAPBodyElement object to body.

SOAPBody body = message.getSOAPBody();
SOAPFactory soapFactory = SOAPFactory.newInstance();
Name bodyName = soapFactory.createName("GetLastTradePrice",

"m", "http://wombat.ztrade.com");
SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

At this point, body contains a SOAPBodyElement object identified by the Name
object bodyName, but there is still no content in bodyElement. Assuming that you
want to get a quote for the stock of Sun Microsystems, Inc., you need to create a
child element for the symbol using the addChildElement method. Then you need to
give it the stock symbol using the addTextNode method. The Name object for the
new SOAPElement object symbol is initialized with only a local name because child
elements inherit the prefix and URI from the parent element.

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

You might recall that the headers and content in a SOAPPart object must be in
XML format. The SAAJ API takes care of this for you, building the appropriate
XML constructs automatically when you call methods such as addBodyElement,
addChildElement, and addTextNode. Note that you can call the method addTextNode
only on an element such as bodyElement or any child elements that are added to it.
You cannot call addTextNode on a SOAPHeader or SOAPBody object because they
contain elements and not text.

64 SOAP WITH ATTACHMENTS API FOR JAVA
The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">
 <symbol>SUNW</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let’s examine this XML excerpt line by line to see how it relates to your SAAJ
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

Here is the SAAJ code:

SOAPMessage message = messageFactory.createMessage();
SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

Here is the XML it produces:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 . . .
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Note that Envelope is the name of the element,
and SOAP-ENV is the namespace prefix. The interface SOAPEnvelope represents a
SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line is an example of an attribute for the SOAP envelope element.
Because a SOAP envelope element always contains this attribute with this value,
a SOAPMessage object comes with it automatically included. xmlns stands for
“XML namespace,” and its value is the URI of the namespace associated with
Envelope.

CREATING AND SENDING A SIMPLE MESSAGE 65
The next line is an empty SOAP header. We could remove it by calling
header.detachNode after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in
SAAJ by a SOAPBody object. The next step is to add content to the body.

Here is the SAAJ code:

Name bodyName = soapFactory.createName("GetLastTradePrice",
"m", "http://wombat.ztrade.com");

SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

Here is the XML it produces:

<m:GetLastTradePrice
 xmlns:m="http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyElement bodyElement in your code represents.
GetLastTradePrice is its local name, m is its namespace prefix, and http://
wombat.ztrade.com is its namespace URI.

Here is the SAAJ code:

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

Here is the XML it produces:

<symbol>SUNW</symbol>

The String "SUNW" is the text node for the element <symbol>. This String object is
the message content that your recipient, the stock quote service, receives.

The following example shows how to add multiple SOAPElement objects and add
text to each of them. The code first creates the SOAPBodyElement object
purchaseLineItems, which has a fully qualified name associated with it. That is, the
Name object for it has a local name, a namespace prefix, and a namespace URI.
As you saw earlier, a SOAPBodyElement object is required to have a fully qualified

66 SOAP WITH ATTACHMENTS API FOR JAVA
name, but child elements added to it, such as SOAPElement objects, can have Name
objects with only the local name.

SOAPBody body = message.getSOAPBody();
Name bodyName = soapFactory.createName("PurchaseLineItems",

"PO", "http://sonata.fruitsgalore.com");
SOAPBodyElement purchaseLineItems =

body.addBodyElement(bodyName);

Name childName = soapFactory.createName("Order");
SOAPElement order =

purchaseLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPElement product = order.addChildElement(childName);
product.addTextNode("Apple");

childName = soapFactory.createName("Price");
SOAPElement price = order.addChildElement(childName);
price.addTextNode("1.56");

childName = soapFactory.createName("Order");
SOAPElement order2 =

purchaseLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPElement product2 = order2.addChildElement(childName);
product2.addTextNode("Peach");

childName = soapFactory.createName("Price");
SOAPElement price2 = order2.addChildElement(childName);
price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaseLineItems
 xmlns:PO="http://sonata.fruitsgalore.com">
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>

 <Order>

CREATING AND SENDING A SIMPLE MESSAGE 67
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
</PO:PurchaseLineItems>

Getting a SOAPConnection Object
The SAAJ API is focused primarily on reading and writing messages. After you
have written a message, you can send it using various mechanisms (such as JMS
or JAXM). The SAAJ API does, however, provide a simple mechanism for
request-response messaging.

To send a message, a SAAJ client can use a SOAPConnection object. A SOAPCon-
nection object is a point-to-point connection, meaning that it goes directly from
the sender to the destination (usually a URL) that the sender specifies.

The first step is to obtain a SOAPConnectionFactory object that you can use to create
your connection. The SAAJ API makes this easy by providing the SOAPConnec-
tionFactory class with a default implementation. You can get an instance of this
implementation using the following line of code.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

Now you can use soapConnectionFactory to create a SOAPConnection object.

SOAPConnection connection =
soapConnectionFactory.createConnection();

You will use connection to send the message that you created.

Sending a Message
A SAAJ client calls the SOAPConnection method call on a SOAPConnection object to
send a message. The call method takes two arguments: the message being sent
and the destination to which the message should go. This message is going to the
stock quote service indicated by the URL object endpoint.

java.net.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes");

SOAPMessage response = connection.call(message, endpoint);

68 SOAP WITH ATTACHMENTS API FOR JAVA
The content of the message you sent is the stock symbol SUNW; the SOAPMes-
sage object response should contain the last stock price for Sun Microsystems,
which you will retrieve in the next section.

A connection uses a fair amount of resources, so it is a good idea to close a con-
nection as soon as you are finished using it.

connection.close();

Getting the Content of a Message
The initial steps for retrieving a message’s content are the same as those for giv-
ing content to a message: Either you use the Message object to get the SOAPBody
object, or you access the SOAPBody object through the SOAPPart and SOAPEnvelope
objects.

Then you access the SOAPBody object’s SOAPBodyElement object, because that is
the element to which content was added in the example. (In a later section you
will see how to add content directly to the SOAPPart object, in which case you
would not need to access the SOAPBodyElement object to add content or to retrieve
it.)

To get the content, which was added with the method SOAPElement.addTextNode,
you call the method Node.getValue. Note that getValue returns the value of the
immediate child of the element that calls the method. Therefore, in the following
code fragment, the getValue method is called on bodyElement, the element on which
the addTextNode method was called.

To access bodyElement, you call the getChildElements method on soapBody. Passing
bodyName to getChildElements returns a java.util.Iterator object that contains all the
child elements identified by the Name object bodyName. You already know that
there is only one, so calling the next method on it will return the SOAPBodyElement
you want. Note that the Iterator.next method returns a Java Object, so you need to
cast the Object it returns to a SOAPBodyElement object before assigning it to the
variable bodyElement.

SOAPBody soapBody = response.getSOAPBody();
java.util.Iterator iterator =

soapBody.getChildElements(bodyName);
SOAPBodyElement bodyElement =

(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

ADDING CONTENT TO THE HEADER 69
If more than one element had the name bodyName, you would have to use a while
loop using the Iterator.hasNext method to make sure that you got all of them.

while (iterator.hasNext()) {
SOAPBodyElement bodyElement =

(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

}

At this point, you have seen how to send a very basic request-response message
and get the content from the response. The next sections provide more detail on
adding content to messages.

Adding Content to the Header
To add content to the header, you create a SOAPHeaderElement object. As with all
new elements, it must have an associated Name object, which you can create
using the message’s SOAPEnvelope object or a SOAPFactory object.

For example, suppose you want to add a conformance claim header to the mes-
sage to state that your message conforms to the WS-I Basic Profile. The follow-
ing code fragment retrieves the SOAPHeader object from message and adds a new
SOAPHeaderElement object to it. This SOAPHeaderElement object contains the correct
qualified name and attribute for a WS-I conformance claim header.

SOAPHeader header = message.getSOAPHeader();
Name headerName = soapFactory.createName("Claim",

"wsi", "http://ws-i.org/schemas/conformanceClaim/");
SOAPHeaderElement headerElement =

header.addHeaderElement(headerName);
headerElement.addAttribute(soapFactory.createName(

"conformsTo"), "http://ws-i.org/profiles/basic1.0/");

At this point, header contains the SOAPHeaderElement object headerElement identified
by the Name object headerName. Note that the addHeaderElement method both creates
headerElement and adds it to header.

70 SOAP WITH ATTACHMENTS API FOR JAVA
A conformance claim header has no content. This code produces the following
XML header:

<SOAP-ENV:Header>
 <wsi:Claim conformsTo="http://ws-i.org/profiles/basic1.0/"
 xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"/>
</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-I, see
the Messaging section of the WS-I Basic Profile.

For a different kind of header, you might want to add content to headerElement.
The following line of code uses the method addTextNode to do this.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderElement
object whose content is "order".

Adding Content to the SOAPPart Object
If the content you want to send is in a file, SAAJ provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody
object and build the XML content yourself, as you did in the preceding section.

To add a file directly to the SOAPPart object, you use a javax.xml.transform.Source
object from JAXP (the Java API for XML Processing). There are three types of
Source objects: SAXSource, DOMSource, and StreamSource. A StreamSource object holds
an XML document in text form. SAXSource and DOMSource objects hold content
along with the instructions for transforming the content into an XML document.

The following code fragment uses the JAXP API to build a DOMSource object that
is passed to the SOAPPart.setContent method. The first three lines of code get a Doc-
umentBuilderFactory object and use it to create the DocumentBuilder object builder.
Because SOAP messages use namespaces, you should set the NamespaceAware

http://www.ws-i.org/Profiles/Basic/2003-01/BasicProfile-1.0-WGAD.html#messaging

ADDING A DOCUMENT TO THE SOAP BODY 71
property for the factory to true. Then builder parses the content file to produce a
Document object.

DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance();

dbFactory.setNamespaceAware(true);
DocumentBuilder builder = dbFactory.newDocumentBuilder();
Document document =

builder.parse("file:///music/order/soap.xml");
DOMSource domSource = new DOMSource(document);

The following two lines of code access the SOAPPart object (using the SOAPMes-
sage object message) and set the new Document object as its content. The SOAP-
Part.setContent method not only sets content for the SOAPBody object but also sets
the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The XML file you use to set the content of the SOAPPart object must include Enve-
lope and Body elements:

<SOAP-ENV:Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 ...
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections Adding a
Document to the SOAP Body (page 71) and Adding Attachments (page 72).

Adding a Document to the SOAP Body
In addition to setting the content of the entire SOAP message to that of a DOM-
Source object, you can add a DOM document directly to the body of the message.
This capability means that you do not have to create a javax.xml.transform.Source
object. After you parse the document, you can add it directly to the message
body:

SOAPBody body = message.getSOAPBody();
SOAPBodyElement docElement = body.addDocument(document);

72 SOAP WITH ATTACHMENTS API FOR JAVA
Manipulating Message Content Using SAAJ
or DOM APIs
Because SAAJ nodes and elements implement the DOM Node and Element inter-
faces, you have many options for adding or changing message content:

• Use only DOM APIs.
• Use only SAAJ APIs.
• Use SAAJ APIs and then switch to using DOM APIs.
• Use DOM APIs and then switch to using SAAJ APIs.

The first three of these cause no problems. After you have created a message,
whether or not you have imported its content from another document, you can
start adding or changing nodes using either SAAJ or DOM APIs.

But if you use DOM APIs and then switch to using SAAJ APIs to manipulate the
document, any references to objects within the tree that were obtained using
DOM APIs are no longer valid. If you must use SAAJ APIs after using DOM
APIs, you should set all your DOM typed references to null, because they can
become invalid. For more information about the exact cases in which references
become invalid, see the SAAJ API documentation.

The basic rule is that you can continue manipulating the message content using
SAAJ APIs as long as you want to, but after you start manipulating it using
DOM, you should no longer use SAAJ APIs.

Adding Attachments
An AttachmentPart object can contain any type of content, including XML. And
because the SOAP part can contain only XML content, you must use an Attach-
mentPart object for any content that is not in XML format.

Creating an AttachmentPart Object and Adding
Content
The SOAPMessage object creates an AttachmentPart object, and the message also
must add the attachment to itself after content has been added. The SOAPMessage
class has three methods for creating an AttachmentPart object.

ADDING ATTACHMENTS 73
The first method creates an attachment with no content. In this case, an Attach-
mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment by using the AttachmentPart method setContent. This
method takes two parameters: a Java Object for the content, and a String object for
the MIME content type that is used to encode the object. Content in the SOAP-
Body part of a message automatically has a Content-Type header with the value
"text/xml" because the content must be in XML. In contrast, the type of content in
an AttachmentPart object must be specified because it can be any type.

Each AttachmentPart object has one or more MIME headers associated with it.
When you specify a type to the setContent method, that type is used for the header
Content-Type. Note that Content-Type is the only header that is required. You may set
other optional headers, such as Content-Id and Content-Location. For convenience,
SAAJ provides get and set methods for the headers Content-Type, Content-Id, and
Content-Location. These headers can be helpful in accessing a particular attachment
when a message has multiple attachments. For example, to access the attach-
ments that have particular headers, you can call the SOAPMessage method getAt-
tachments and pass it a MIMEHeaders object containing the MIME headers you are
interested in.

The following code fragment shows one of the ways to use the method setContent.
The Java Object in the first parameter can be a String, a stream, a javax.xml.trans-
form.Source object, or a javax.activation.DataHandler object. The Java Object being
added in the following code fragment is a String, which is plain text, so the sec-
ond argument must be "text/plain". The code also sets a content identifier, which
can be used to identify this AttachmentPart object. After you have added content to
attachment, you must add it to the SOAPMessage object, something that is done in
the last line.

String stringContent = "Update address for Sunny Skies " +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain");
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that contains the
string stringContent and has a header that contains the string "text/plain". It also has a

74 SOAP WITH ATTACHMENTS API FOR JAVA
Content-Id header with "update_address" as its value. And attachment is now part of
message.

The other two SOAPMessage.createAttachment methods create an AttachmentPart object
complete with content. One is very similar to the AttachmentPart.setContent method
in that it takes the same parameters and does essentially the same thing. It takes a
Java Object containing the content and a String giving the content type. As with
AttachmentPart.setContent, the Object can be a String, a stream, a javax.xml.trans-
form.Source object, or a javax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a DataH-
andler object, which is part of the JavaBeans Activation Framework (JAF). Using
a DataHandler object is fairly straightforward. First, you create a java.net.URL object
for the file you want to add as content. Then you create a DataHandler object ini-
tialized with the URL object:

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment =

message.createAttachmentPart(dataHandler);
attachment.setContentId("attached_image");

message.addAttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for
Content-ID using the method setContentId. This method takes a String that can be
whatever you like to identify the attachment. Second, unlike the other methods
for setting content, this one does not take a String for Content-Type. This method
takes care of setting the Content-Type header for you, something that is possible
because one of the things a DataHandler object does is to determine the data type
of the file it contains.

Accessing an AttachmentPart Object
If you receive a message with attachments or want to change an attachment to a
message you are building, you need to access the attachment. The SOAPMessage
class provides two versions of the getAttachments method for retrieving its Attach-
mentPart objects. When it is given no argument, the method SOAPMessage.getAttach-
ments returns a java.util.Iterator object over all the AttachmentPart objects in a
message. When getAttachments is given a MimeHeaders object, which is a list of
MIME headers, getAttachments returns an iterator over the AttachmentPart objects
that have a header that matches one of the headers in the list. The following code
uses the getAttachments method that takes no arguments and thus retrieves all the

ADDING ATTRIBUTES 75
AttachmentPart objects in the SOAPMessage object message. Then it prints the content
ID, the content type, and the content of each AttachmentPart object.

java.util.Iterator iterator = message.getAttachments();
while (iterator.hasNext()) {

AttachmentPart attachment =
(AttachmentPart)iterator.next();

String id = attachment.getContentId();
String type = attachment.getContentType();
System.out.print("Attachment " + id +

" has content type " + type);
if (type == "text/plain") {

Object content = attachment.getContent();
System.out.println("Attachment " +

"contains:\n" + content);
}

}

Adding Attributes
An XML element can have one or more attributes that give information about
that element. An attribute consists of a name for the attribute followed immedi-
ately by an equal sign (=) and its value.

The SOAPElement interface provides methods for adding an attribute, for getting
the value of an attribute, and for removing an attribute. For example, in the fol-
lowing code fragment, the attribute named id is added to the SOAPElement object
person. Because person is a SOAPElement object rather than a SOAPBodyElement
object or SOAPHeaderElement object, it is legal for its Name object to contain only a
local name.

Name attributeName = envelope.createName("id");
person.addAttribute(attributeName, "Person7");

These lines of code will generate the first line in the following XML fragment.

<person id="Person7">
 ...
</person>

The following line of code retrieves the value of the attribute whose name is id.

String attributeValue =
person.getAttributeValue(attributeName);

76 SOAP WITH ATTACHMENTS API FOR JAVA
If you had added two or more attributes to person, the preceding line of code
would have returned only the value for the attribute named id. If you wanted to
retrieve the values for all the attributes for person, you would use the method
getAllAttributes, which returns an iterator over all the values. The following lines
of code retrieve and print each value on a separate line until there are no more
attribute values. Note that the Iterator.next method returns a Java Object, which is
cast to a Name object so that it can be assigned to the Name object attributeName.
(The examples in DOMExample.java and DOMSrcExample.java (page 95) use
code similar to this.)

Iterator iterator = person.getAllAttributes();
while (iterator.hasNext()){

Name attributeName = (Name) iterator.next();
System.out.println("Attribute name is " +

attributeName.getQualifiedName());
System.out.println("Attribute value is " +

element.getAttributeValue(attributeName));
}

The following line of code removes the attribute named id from person. The vari-
able successful will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This
information is general in that it applies to any element. The next section dis-
cusses attributes that can be added only to header elements.

Header Attributes
Attributes that appear in a SOAPHeaderElement object determine how a recipient
processes a message. You can think of header attributes as offering a way to
extend a message, giving information about such things as authentication, trans-
action management, payment, and so on. A header attribute refines the meaning
of the header, whereas the header refines the meaning of the message contained
in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAP-
HeaderElement objects: actor and mustUnderstand. The next two sections discuss these
attributes.

See HeaderExample.java (page 93) for an example that uses the code shown in
this section.

ADDING ATTRIBUTES 77
The Actor Attribute
The actor attribute is optional, but if it is used, it must appear in a SOAPHeaderEle-
ment object. Its purpose is to indicate the recipient of a header element. The
default actor is the message’s ultimate recipient; that is, if no actor attribute is
supplied, the message goes directly to the ultimate recipient.

An actor is an application that can both receive SOAP messages and forward
them to the next actor. The ability to specify one or more actors as intermediate
recipients makes it possible to route a message to multiple recipients and to sup-
ply header information that applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. Its SOAP-
Header object might have SOAPHeaderElement objects with actor attributes that
route the message to applications that function as the order desk, the shipping
desk, the confirmation desk, and the billing department. Each of these applica-
tions will take the appropriate action, remove the SOAPHeaderElement objects rele-
vant to it, and send the message on to the next actor.

Note: Although the SAAJ API provides the API for adding these attributes, it does
not supply the API for processing them. For example, the actor attribute requires
that there be an implementation such as a messaging provider service to route the
message from one actor to the next.

An actor is identified by its URI. For example, the following line of code, in
which orderHeader is a SOAPHeaderElement object, sets the actor to the given URI.

orderHeader.setActor("http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The follow-
ing code fragment first uses the SOAPMessage object message to get its SOAPHeader
object header. Then header creates four SOAPHeaderElement objects, each of which
sets its actor attribute.

SOAPHeader header = message.getSOAPHeader();
SOAPFactory soapFactory = SOAPFactory.newInstance();

String nameSpace = "ns";
String nameSpaceURI = "http://gizmos.com/NSURI";

Name order = soapFactory.createName("orderDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement orderHeader =
header.addHeaderElement(order);

78 SOAP WITH ATTACHMENTS API FOR JAVA
orderHeader.setActor("http://gizmos.com/orders");

Name shipping =
soapFactory.createName("shippingDesk",

nameSpace, nameSpaceURI);
SOAPHeaderElement shippingHeader =

header.addHeaderElement(shipping);
shippingHeader.setActor("http://gizmos.com/shipping");

Name confirmation =
soapFactory.createName("confirmationDesk",

nameSpace, nameSpaceURI);
SOAPHeaderElement confirmationHeader =

header.addHeaderElement(confirmation);
confirmationHeader.setActor(

"http://gizmos.com/confirmations");

Name billing = soapFactory.createName("billingDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement billingHeader =
header.addHeaderElement(billing);

billingHeader.setActor("http://gizmos.com/billing");

The SOAPHeader interface provides two methods that return a java.util.Iterator object
over all the SOAPHeaderElement objects that have an actor that matches the speci-
fied actor. The first method, examineHeaderElements, returns an iterator over all the
elements that have the specified actor.

java.util.Iterator headerElements =
header.examineHeaderElements("http://gizmos.com/orders");

The second method, extractHeaderElements, not only returns an iterator over all the
SOAPHeaderElement objects that have the specified actor attribute but also detaches
them from the SOAPHeader object. So, for example, after the order desk applica-
tion did its work, it would call extractHeaderElements to remove all the SOAPHeader-
Element objects that applied to it.

java.util.Iterator headerElements =
header.extractHeaderElements("http://gizmos.com/orders");

Each SOAPHeaderElement object can have only one actor attribute, but the same
actor can be an attribute for multiple SOAPHeaderElement objects.

Two additional SOAPHeader methods—examineAllHeaderElements and extractAllHead-
erElements—allow you to examine or extract all the header elements, whether or

ADDING ATTRIBUTES 79
not they have an actor attribute. For example, you could use the following code
to display the values of all the header elements:

Iterator allHeaders =
header.examineAllHeaderElements();

while (allHeaders.hasNext()) {
SOAPHeaderElement headerElement =

(SOAPHeaderElement)allHeaders.next();
Name headerName =

headerElement.getElementName();
System.out.println("\nHeader name is " +

headerName.getQualifiedName());
System.out.println("Actor is " +

headerElement.getActor());
}

The mustUnderstand Attribute
The other attribute that must be added only to a SOAPHeaderElement object is mus-
tUnderstand. This attribute says whether or not the recipient (indicated by the actor
attribute) is required to process a header entry. When the value of the mustUnder-
stand attribute is true, the actor must understand the semantics of the header entry
and must process it correctly to those semantics. If the value is false, processing
the header entry is optional. A SOAPHeaderElement object with no mustUnderstand
attribute is equivalent to one with a mustUnderstand attribute whose value is false.

The mustUnderstand attribute is used to call attention to the fact that the semantics
in an element are different from the semantics in its parent or peer elements. This
allows for robust evolution, ensuring that a change in semantics will not be
silently ignored by those who may not fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot pro-
cess the header, it must send a SOAP fault back to the sender. (See Using SOAP
Faults, page 80.) The actor must not change state or cause any side effects, so
that, to an outside observer, it appears that the fault was sent before any header
processing was done.

The following code fragment creates a SOAPHeader object with a SOAPHeaderEle-
ment object that has a mustUnderstand attribute.

SOAPHeader header = message.getSOAPHeader();

Name name = soapFactory.createName("Transaction", "t",
"http://gizmos.com/orders");

80 SOAP WITH ATTACHMENTS API FOR JAVA
SOAPHeaderElement transaction = header.addHeaderElement(name);
transaction.setMustUnderstand(true);
transaction.addTextNode("5");

This code produces the following XML:

<SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="http://gizmos.com/orders"
 SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
</SOAP-ENV:Header>

You can use the getMustUnderstand method to retrieve the value of the mustUnder-
stand attribute. For example, you could add the following to the code fragment at
the end of the preceding section:

System.out.println("mustUnderstand is " +
headerElement.getMustUnderstand());

Using SOAP Faults
In this section, you will see how to use the API for creating and accessing a
SOAP fault element in an XML message.

Overview of SOAP Faults
If you send a message that was not successful for some reason, you may get back
a response containing a SOAP fault element, which gives you status information,
error information, or both. There can be only one SOAP fault element in a mes-
sage, and it must be an entry in the SOAP body. Furthermore, if there is a SOAP
fault element in the SOAP body, there can be no other elements in the SOAP
body. This means that when you add a SOAP fault element, you have effectively
completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJ API,
is similar to an Exception object in that it conveys information about a problem.
However, a SOAPFault object is quite different in that it is an element in a mes-
sage’s SOAPBody object rather than part of the try/catch mechanism used for Excep-
tion objects. Also, as part of the SOAPBody object, which provides a simple means

USING SOAP FAULTS 81
for sending mandatory information intended for the ultimate recipient, a SOAP-
Fault object only reports status or error information. It does not halt the execution
of an application, as an Exception object can.

If you are a client using the SAAJ API and are sending point-to-point messages,
the recipient of your message may add a SOAPFault object to the response to alert
you to a problem. For example, if you sent an order with an incomplete address
for where to send the order, the service receiving the order might put a SOAPFault
object in the return message telling you that part of the address was missing.

Another example of who might send a SOAP fault is an intermediate recipient,
or actor. As stated in the section Adding Attributes (page 75), an actor that can-
not process a header that has a mustUnderstand attribute with a value of true must
return a SOAP fault to the sender.

A SOAPFault object contains the following elements:

• A fault code: Always required. The fault code must be a fully qualified
name: it must contain a prefix followed by a local name. The SOAP 1.1
specification defines a set of fault code local name values in section 4.4.1,
which a developer can extend to cover other problems. The default fault
code local names defined in the specification relate to the SAAJ API as fol-
lows:
• VersionMismatch: The namespace for a SOAPEnvelope object was invalid.
• MustUnderstand: An immediate child element of a SOAPHeader object had

its mustUnderstand attribute set to true, and the processing party did not
understand the element or did not obey it.

• Client: The SOAPMessage object was not formed correctly or did not con-
tain the information needed to succeed.

• Server: The SOAPMessage object could not be processed because of a pro-
cessing error, not because of a problem with the message itself.

• A fault string: Always required. A human-readable explanation of the
fault.

• A fault actor: Required if the SOAPHeader object contains one or more actor
attributes; optional if no actors are specified, meaning that the only actor
is the ultimate destination. The fault actor, which is specified as a URI,
identifies who caused the fault. For an explanation of what an actor is, see
The Actor Attribute, page 77.

• A Detail object: Required if the fault is an error related to the SOAPBody
object. If, for example, the fault code is Client, indicating that the message
could not be processed because of a problem in the SOAPBody object, the

82 SOAP WITH ATTACHMENTS API FOR JAVA
SOAPFault object must contain a Detail object that gives details about the
problem. If a SOAPFault object does not contain a Detail object, it can be
assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object
You have seen how to add content to a SOAPBody object; this section walks you
through adding a SOAPFault object to a SOAPBody object and then adding its con-
stituent parts.

As with adding content, the first step is to access the SOAPBody object.

SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault
object. The following line of code creates a SOAPFault object and adds it to body.

SOAPFault fault = body.addFault();

The SOAPFault interface provides convenience methods that create an element,
add the new element to the SOAPFault object, and add a text node, all in one oper-
ation. For example, in the following lines of code, the method setFaultCode creates
a faultcode element, adds it to fault, and adds a Text node with the value "SOAP-
ENV:Server" by specifying a default prefix and the namespace URI for a SOAP
envelope.

Name faultName =
soapFactory.createName("Server",

"", SOAPConstants.URI_NS_SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultActor("http://gizmos.com/orders");
fault.setFaultString("Server not responding");

The SOAPFault object fault, created in the preceding lines of code, indicates that
the cause of the problem is an unavailable server and that the actor at http://
gizmos.com/orders is having the problem. If the message were being routed only to
its ultimate destination, there would have been no need to set a fault actor. Also
note that fault does not have a Detail object because it does not relate to the SOAP-
Body object.

The following code fragment creates a SOAPFault object that includes a Detail
object. Note that a SOAPFault object can have only one Detail object, which is sim-
ply a container for DetailEntry objects, but the Detail object can have multiple

USING SOAP FAULTS 83
DetailEntry objects. The Detail object in the following lines of code has two
DetailEntry objects added to it.

SOAPFault fault = body.addFault();

Name faultName = soapFactory.createName("Client",
"", SOAPConstants.URI_NS_SOAP_ENVELOPE);

fault.setFaultCode(faultName);
fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail();

Name entryName = soapFactory.createName("order",
"PO", "http://gizmos.com/orders/");

DetailEntry entry = detail.addDetailEntry(entryName);
entry.addTextNode("Quantity element does not have a value");

Name entryName2 = soapFactory.createName("confirmation",
"PO", "http://gizmos.com/confirm");

DetailEntry entry2 = detail.addDetailEntry(entryName2);
entry2.addTextNode("Incomplete address: no zip code");

See SOAPFaultTest.java (page 101) for an example that uses code like that
shown in this section.

Retrieving Fault Information
Just as the SOAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.
The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newMessage is the
SOAPMessage object that has been sent to you. Because a SOAPFault object must be
part of the SOAPBody object, the first step is to access the SOAPBody object. Then
the code tests to see whether the SOAPBody object contains a SOAPFault object. If
it does, the code retrieves the SOAPFault object and uses it to retrieve its contents.
The convenience methods getFaultCode, getFaultString, and getFaultActor make
retrieving the values very easy.

SOAPBody body = newMessage.getSOAPBody();
if (body.hasFault()) {

SOAPFault newFault = body.getFault();
Name code = newFault.getFaultCodeAsName();
String string = newFault.getFaultString();
String actor = newFault.getFaultActor();

84 SOAP WITH ATTACHMENTS API FOR JAVA
Next the code prints the values it has just retrieved. Not all messages are
required to have a fault actor, so the code tests to see whether there is one. Test-
ing whether the variable actor is null works because the method getFaultActor
returns null if a fault actor has not been set.

System.out.println("SOAP fault contains: ");
System.out.println(" Fault code = " +

code.getQualifiedName());
System.out.println(" Fault string = " + string);

if (actor != null) {
System.out.println(" Fault actor = " + actor);

}

The final task is to retrieve the Detail object and get its DetailEntry objects. The
code uses the SOAPFault object newFault to retrieve the Detail object newDetail, and
then it uses newDetail to call the method getDetailEntries. This method returns the
java.util.Iterator object entries, which contains all the DetailEntry objects in newDetail.
Not all SOAPFault objects are required to have a Detail object, so the code tests to
see whether newDetail is null. If it is not, the code prints the values of the DetailEntry
objects as long as there are any.

Detail newDetail = newFault.getDetail();
if (newDetail != null) {

Iterator entries = newDetail.getDetailEntries();
while (entries.hasNext()) {

DetailEntry newEntry =
(DetailEntry)entries.next();

String value = newEntry.getValue();
System.out.println(" Detail entry = " + value);

}
}

In summary, you have seen how to add a SOAPFault object and its contents to a
message as well as how to retrieve the contents. A SOAPFault object, which is
optional, is added to the SOAPBody object to convey status or error information. It
must always have a fault code and a String explanation of the fault. A SOAPFault
object must indicate the actor that is the source of the fault only when there are
multiple actors; otherwise, it is optional. Similarly, the SOAPFault object must
contain a Detail object with one or more DetailEntry objects only when the contents
of the SOAPBody object could not be processed successfully.

See SOAPFaultTest.java (page 101) for an example that uses code like that
shown in this section.

CODE EXAMPLES 85
Code Examples
The first part of this tutorial uses code fragments to walk you through the funda-
mentals of using the SAAJ API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Request.java.
Then you will see how to run the programs MyUddiPing.java, HeaderExample.java,
DOMExample.java, DOMSrcExample.java, Attachments.java, and SOAPFaultTest.java.

To run these examples, you will deploy them to the Sun Java System Application
Server Platform 8.1 from the IDE.

Request.java
The class Request.java puts together the code fragments used in the section
Tutorial (page 59) and adds what is needed to make it a complete example of a
client sending a request-response message. In addition to putting all the code
together, it adds import statements, a main method, and a try/catch block with
exception handling.

import javax.xml.soap.*;
import java.util.*;
import java.net.URL;

public class Request {
public static void main(String[] args){

try {
SOAPConnectionFactory soapConnectionFactory =

SOAPConnectionFactory.newInstance();
SOAPConnection connection =

soapConnectionFactory.createConnection();
SOAPFactory soapFactory =

SOAPFactory.newInstance();

MessageFactory factory =
MessageFactory.newInstance();

SOAPMessage message = factory.createMessage();

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

Name bodyName = soapFactory.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

86 SOAP WITH ATTACHMENTS API FOR JAVA
SOAPBodyElement bodyElement =
body.addBodyElement(bodyName);

Name name = soapFactory.createName("symbol");
SOAPElement symbol =

bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

URL endpoint = new URL
("http://wombat.ztrade.com/quotes");

SOAPMessage response =
connection.call(message, endpoint);

connection.close();

SOAPBody soapBody = response.getSOAPBody();

Iterator iterator =
soapBody.getChildElements(bodyName);

bodyElement = (SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

For Request.java to be runnable, the second argument supplied to the call method
would have to be a valid existing URI, and this is not true in this case. However,
the application in the next section is one that you can run.

MyUddiPing.java
The program MyUddiPing.java is another example of a SAAJ client application. It
sends a request to a Universal Description, Discovery and Integration (UDDI)
service and gets back the response. A UDDI service is a business registry and
repository from which you can get information about businesses that have regis-
tered themselves with the registry service. For this example, the MyUddiPing
application is not actually accessing a UDDI service registry but rather a test
(demo) version. Because of this, the number of businesses you can get informa-

MYUDDIPING.JAVA 87
tion about is limited. Nevertheless, MyUddiPing demonstrates a request being
sent and a response being received.

Setting Up
The MyUddiPing example is in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/myuddiping/

Note: <INSTALL> is the directory where you installed the tutorial bundle.

In the myuddiping directory, you will find an IDE project called MyUddiPing. Its
src directory contains one source file, MyUddiPing.java.

The file uddi.properties contains the URL of the destination (a UDDI test registry)
and the proxy host and proxy port of the sender. By default, the destination is the
IBM test registry; the Microsoft test registry is commented out.

If you access the Internet from behind a firewall, edit the uddi.properties file to sup-
ply the correct proxy host and proxy port. If you are not sure what the values for
these are, consult your system administrator or another person with that informa-
tion. The typical value of the proxy port is 8080. You can also edit the file to
specify another registry.

The file build.xml is the IDE’s build file for this example. The Build Project com-
mand is hooked up to a target in the build.xml file that compiles the source file
MyUddiPing.java and puts the resulting .class file in the build directory. So to do
these tasks, you take the same steps as above and right-click the project, after
which you choose Build Project.

Examining MyUddiPing
We will go through the file MyUddiPing.java a few lines at a time, concentrating on
the last section. This is the part of the application that accesses only the content
you want from the XML message returned by the UDDI registry.

The first few lines of code import the packages used in the application.

import javax.xml.soap.*;
import java.net.*;
import java.util.*;
import java.io.*;

../examples/saaj/myuddiping/src/MyUddiPing.java
../examples/saaj/myuddiping/src/MyUddiPing.java

88 SOAP WITH ATTACHMENTS API FOR JAVA
The next few lines begin the definition of the class MyUddiPing, which starts with
the definition of its main method. The first thing it does is to check to see whether
two arguments were supplied. If they were not, it prints a usage message and
exits. The usage message mentions only one argument; the other is supplied by
the build.xml target.

public class MyUddiPing {
public static void main(String[] args) {

try {
if (args.length != 2) {

System.err.println("Usage: asant run " +
"-Dbusiness-name=<name>");

System.exit(1);
}

The following lines create a java.util.Properties object that contains the system
properties and the properties from the file uddi.properties, which is in the myuddiping
directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[0]));

Properties props = System.getProperties();

Enumeration propNames = myprops.propertyNames();
while (propNames.hasMoreElements()) {

String s = (String)propNames.nextElement();
props.setProperty(s, myprops.getProperty(s));

}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of MessageFactory and an instance of SOAPFactory, using the MessageFactory
instance to create a message.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection =
soapConnectionFactory.createConnection();

MessageFactory messageFactory =
MessageFactory.newInstance();

SOAPFactory soapFactory = SOAPFactory.newInstance();

SOAPMessage message =
messageFactory.createMessage();

MYUDDIPING.JAVA 89
The next lines of code retrieve the SOAPHeader and SOAPBody objects from the
message and remove the header.

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

The following lines of code create the UDDI find_business message. The first line
creates a SOAPBodyElement with a fully qualified name, including the required
namespace for a UDDI version 2 message. The next lines add two attributes to
the new element: the required attribute generic, with the UDDI version number
2.0, and the optional attribute maxRows, with the value 100. Then the code adds a
child element that has the Name object name and adds text to the element by using
the method addTextNode. The added text is the business name you will supply at
the command line when you run the application.

SOAPBodyElement findBusiness =
body.addBodyElement(soapFactory.createName(

"find_business", "",
"urn:uddi-org:api_v2"));

findBusiness.addAttribute(soapFactory.createName(
"generic"), "2.0");

findBusiness.addAttribute(soapFactory.createName(
"maxRows"), "100");

SOAPElement businessName =
findBusiness.addChildElement(

soapFactory.createName("name"));
businessName.addTextNode(args[1]);

The next line of code saves the changes that have been made to the message.
This method will be called automatically when the message is sent, but it does
not hurt to call it explicitly.

message.saveChanges();

The following lines display the message that will be sent:

System.out.println("\n--- Request Message ---\n");
message.writeTo(System.out);

90 SOAP WITH ATTACHMENTS API FOR JAVA
The next line of code creates the java.net.URL object that represents the destination
for this message. It gets the value of the property named URL from the system
property file.

URL endpoint = new URL(
System.getProperties().getProperty("URL"));

Next, the message message is sent to the destination that endpoint represents, which
is the UDDI test registry. The call method will block until it gets a SOAPMessage
object back, at which point it returns the reply.

SOAPMessage reply =
connection.call(message, endpoint);

In the next lines of code, the first line prints a line giving the URL of the sender
(the test registry), and the others display the returned message.

System.out.println("\n\nReceived reply from: " +
endpoint);

System.out.println("\n---- Reply Message ----\n");
reply.writeTo(System.out);

The returned message is the complete SOAP message, an XML document, as it
looks when it comes over the wire. It is a businessList that follows the format spec-
ified in http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802.

As interesting as it is to see the XML that is actually transmitted, the XML docu-
ment format does not make it easy to see the text that is the message’s content.
To remedy this, the last part of MyUddiPing.java contains code that prints only the
text content of the response, making it much easier to see the information you
want.

Because the content is in the SOAPBody object, the first step is to access it, as
shown in the following line of code.

SOAPBody replyBody = reply.getSOAPBody();

Next, the code displays a message describing the content:

System.out.println("\n\nContent extracted from " +
"the reply message:\n");

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802

MYUDDIPING.JAVA 91
To display the content of the message, the code uses the known format of the
reply message. First, it gets all the reply body’s child elements named businessList:

Iterator businessListIterator =
replyBody.getChildElements(

soapFactory.createName("businessList",
"", "urn:uddi-org:api_v2"));

The method getChildElements returns the elements in the form of a java.util.Iterator
object. You access the child elements by calling the method next on the Iterator
object. An immediate child of a SOAPBody object is a SOAPBodyElement object.

We know that the reply can contain only one businessList element, so the code then
retrieves this one element by calling the iterator’s next method. Note that the
method Iterator.next returns an Object, which must be cast to the specific kind of
object you are retrieving. Thus, the result of calling businessListIterator.next is cast
to a SOAPBodyElement object:

SOAPBodyElement businessList =
(SOAPBodyElement)businessListIterator.next();

The next element in the hierarchy is a single businessInfos element, so the code
retrieves this element in the same way it retrieved the businessList. Children of
SOAPBodyElement objects and all child elements from this point forward are
SOAPElement objects.

Iterator businessInfosIterator =
businessList.getChildElements(

soapFactory.createName("businessInfos",
"", "urn:uddi-org:api_v2"));

SOAPElement businessInfos =
(SOAPElement)businessInfosIterator.next();

The businessInfos element contains zero or more businessInfo elements. If the query
returned no businesses, the code prints a message saying that none were found. If
the query returned businesses, however, the code extracts the name and optional
description by retrieving the child elements that have those names. The method
Iterator.hasNext can be used in a while loop because it returns true as long as the next

92 SOAP WITH ATTACHMENTS API FOR JAVA
call to the method next will return a child element. Accordingly, the loop ends
when there are no more child elements to retrieve.

Iterator businessInfoIterator =
businessInfos.getChildElements(

soapFactory.createName("businessInfo",
"", "urn:uddi-org:api_v2"));

if (! businessInfoIterator.hasNext()) {
System.out.println("No businesses found " +

"matching the name \"" + args[1] + "\".");
} else {

while (businessInfoIterator.hasNext()) {
SOAPElement businessInfo = (SOAPElement)

businessInfoIterator.next();

Iterator nameIterator =
businessInfo.getChildElements(

soapFactory.createName("name",
"", "urn:uddi-org:api_v2"));

while (nameIterator.hasNext()) {
businessName =

(SOAPElement)nameIterator.next();
System.out.println("Company name: " +

businessName.getValue());
}
Iterator descriptionIterator =

businessInfo.getChildElements(
soapFactory.createName(

"description", "",
"urn:uddi-org:api_v2"));

while (descriptionIterator.hasNext()) {
SOAPElement businessDescription =

(SOAPElement) descriptionIterator.next();
System.out.println("Description: " +

businessDescription.getValue());
}
System.out.println("");

}

Running MyUddiPing
Make sure you have edited the uddi.properties file and compiled MyUddiPing.java as
described in Setting Up (page 87).

HEADEREXAMPLE.JAVA 93
To run the application, follow these steps:

1. If you have not already opened the MyUddiPing project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial14/examples/saaj/, select the myuddiping project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server
installation, select activation.jar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. Right-click the project in the Projects window, choose Properties, click
Run, and type uddi.properties food in the Arguments field. The first argument
is the file uddi.properties. The other argument is the name of the business for
which you want to get a description. Click OK.

4. In the Projects window, right-click the project and choose Run Project.
5. In the Output window, the application displays the following output:

Content extracted from the reply message:

Company name: Food
Description: Test Food

Company name: Food Manufacturing

Company name: foodCompanyA
Description: It is a food company sells biscuit

If you want to run MyUddiPing again, you may want to start over by deleting the
build directory and the .class file it contains. You can do this by right-clicking the
project node in the Projects window and choosing Clean Project.

HeaderExample.java
The example HeaderExample.java, based on the code fragments in the section Add-
ing Attributes (page 75), creates a message that has several headers. It then
retrieves the contents of the headers and prints them. You will find the code for
HeaderExample in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/headerexample

../examples/saaj/headers/src/HeaderExample.java

94 SOAP WITH ATTACHMENTS API FOR JAVA
Running HeaderExample
To run the application, follow these steps:

1. If you have not already opened the HeaderExample project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial14/examples/saaj/, select the headerexample project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server
installation, select activation.jar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. In the Projects window, right-click the project and choose Run Project.
4. In the Output window, the application displays the following output:

----- Request Message ----

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<ns:orderDesk SOAP-ENV:actor="http://gizmos.com/orders" xmlns:ns="http://gizmos.com/
NSURI"/>
<ns:shippingDesk SOAP-ENV:actor="http://gizmos.com/shipping" xmlns:ns="http://
gizmos.com/NSURI"/>
<ns:confirmationDesk
SOAP-ENV:actor="http://gizmos.com/confirmations" xmlns:ns="http://gizmos.com/
NSURI"/>
<ns:billingDesk SOAP-ENV:actor="http://gizmos.com/billing" xmlns:ns="http://
gizmos.com/NSURI"/>
<t:Transaction SOAP-ENV:mustUnderstand="1" xmlns:t="http://gizmos.com/orders">5</
t:Transaction>
</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envelope>
Header name is ns:orderDesk
Actor is http://gizmos.com/orders
mustUnderstand is false

Header name is ns:shippingDesk
Actor is http://gizmos.com/shipping
mustUnderstand is false

Header name is ns:confirmationDesk
Actor is http://gizmos.com/confirmations
mustUnderstand is false

DOMEXAMPLE.JAVA AND DOMSRCEXAMPLE.JAVA 95
Header name is ns:billingDesk
Actor is http://gizmos.com/billing
mustUnderstand is false

Header name is t:Transaction
Actor is null
mustUnderstand is true

DOMExample.java and
DOMSrcExample.java
The examples DOMExample.java and DOMSrcExample.java show how to add a DOM
document to a message and then traverse its contents. They show two ways to do
this:

• DOMExample.java creates a DOM document and adds it to the body of a mes-
sage.

• DOMSrcExample.java creates the document, uses it to create a DOMSource
object, and then sets the DOMSource object as the content of the message’s
SOAP part.

You will find the code for DOMExample and DOMSrcExample in the following
directory:

<INSTALL>/j2eetutorial14/examples/saaj/dom

Examining DOMExample
DOMExample first creates a DOM document by parsing an XML document.
The file it parses is one that you specify on the command line.

static Document document;
...

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(args[0]));
...

../examples/saaj/dom/src/DOMExample.java
../examples/saaj/dom/src/DOMSrcExample.java

96 SOAP WITH ATTACHMENTS API FOR JAVA
Next, the example creates a SOAP message in the usual way. Then it adds the
document to the message body:

SOAPBodyElement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displays the
message content and then uses a recursive method, getContents, to traverse the ele-
ment tree using SAAJ APIs and display the message contents in a readable form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {
Node node = (Node) iterator.next();
SOAPElement element = null;
Text text = null;
if (node instanceof SOAPElement) {

element = (SOAPElement)node;
Name name = element.getElementName();
System.out.println(indent + "Name is " +

name.getQualifiedName());
Iterator attrs = element.getAllAttributes();
while (attrs.hasNext()){

Name attrName = (Name)attrs.next();
System.out.println(indent +

" Attribute name is " +
attrName.getQualifiedName());

System.out.println(indent +
" Attribute value is " +
element.getAttributeValue(attrName));

}
Iterator iter2 = element.getChildElements();
getContents(iter2, indent + " ");

} else {
text = (Text) node;
String content = text.getValue();
System.out.println(indent +

"Content is: " + content);
}

}
}

DOMEXAMPLE.JAVA AND DOMSRCEXAMPLE.JAVA 97
Examining DOMSrcExample
DOMSrcExample differs from DOMExample in only a few ways. First, after it
parses the document, DOMSrcExample uses the document to create a DOMSource
object. This code is the same as that of DOMExample except for the last line:

static DOMSource domSource;
...
try {

DocumentBuilder builder =
factory.newDocumentBuilder();

document = builder.parse(new File(args[0]));
domSource = new DOMSource(document);
...

Then, after DOMSrcExample creates the message, it does not get the header and
body and add the document to the body, as DOMExample does. Instead, DOM-
SrcExample gets the SOAP part and sets the DOMSource object as its content:

// Create a message
SOAPMessage message = messageFactory.createMessage();

// Get the SOAP part and set its content to domSource
SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both the
header (if it exists) and the body of the message.

The most important difference between these two examples is the kind of docu-
ment you can use to create the message. Because DOMExample adds the docu-
ment to the body of the SOAP message, you can use any valid XML file to
create the document. But because DOMSrcExample makes the document the
entire content of the message, the document must already be in the form of a
valid SOAP message, and not just any XML document.

98 SOAP WITH ATTACHMENTS API FOR JAVA
Running DOMExample and DOMSrcExample
To run DOMExample and DOMSrcExample, you use the IDE project that is in
the directory <INSTALL>/j2eetutorial14/examples/saaj. This directory also contains sev-
eral sample XML files you can use:

• domsrc1.xml, an example that has a SOAP header (the contents of the Head-
erExample output) and the body of a UDDI query

• domsrc2.xml, an example of a reply to a UDDI query (specifically, some
sample output from the MyUddiPing example), but with spaces added for
readability

• uddimsg.xml, similar to domsrc2.xml except that it is only the body of the mes-
sage and contains no spaces

• slide.xml

To run the application, follow these steps:

1. If you have not already opened the DomExample project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial14/examples/saaj/, select the DomExample project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the
“saaj-api.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server
installation, select saaj-api.jar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. Right-click the project in the Projects window, choose Properties, click
Run, and type domsrc1.xml (or any of the other arguments above). Click OK.

4. In the Projects window, right-click the project and choose Run Project.
5. In the Output window, the application displays the following output:

Running DOMExample.
Name is businessList
Attribute name is generic
Attribute value is 2.0
Attribute name is operator
Attribute value is www.ibm.com/services/uddi
Attribute name is truncated

ATTACHMENTS.JAVA 99
Attribute value is false
Attribute name is xmlns
Attribute value is urn:uddi-org:api_v2
...

To run DOMSrcExample, first right-click the project in the Projects window,
choose Properties, click Run, and type domexample.DOMSrcExample in the Main
Class field and domsrc2.xml in the Arguments field. Then right-click the project
and choose Run Project.

When you run DOMSrcExample, you will see output that begins like the follow-
ing:

run-domsrc:
Running DOMSrcExample.
Body contents:
Content is:

Name is businessList
 Attribute name is generic
 Attribute value is 2.0
 Attribute name is operator
 Attribute value is www.ibm.com/services/uddi
 Attribute name is truncated
 Attribute value is false
 Attribute name is xmlns
 Attribute value is urn:uddi-org:api_v2
 ...

If you run DOMSrcExample with the file uddimsg.xml or slide.xml, you will see
runtime errors.

Attachments.java
The example Attachments.java, based on the code fragments in the sections Creat-
ing an AttachmentPart Object and Adding Content (page 72) and Accessing an
AttachmentPart Object (page 74), creates a message that has a text attachment
and an image attachment. It then retrieves the contents of the attachments and
prints the contents of the text attachment. You will find the code for Attachments
in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/attachments/

../examples/saaj/attachments/src/Attachments.java

100 SOAP WITH ATTACHMENTS API FOR JAVA
The Attachments.java program first creates a message in the usual way. It then cre-
ates an AttachmentPart for the text attachment:

AttachmentPart attachment1 = message.createAttachmentPart();

After it reads input from a file into a string named stringContent, it sets the content
of the attachment to the value of the string and the type to text/plain and also sets a
content ID.

attachment1.setContent(stringContent, "text/plain");
attachment1.setContentId("attached_text");

It then adds the attachment to the message:

message.addAttachmentPart(attachment1);

The example uses a javax.activation.DataHandler object to hold a reference to the
graphic that constitutes the second attachment. It creates this attachment using
the form of the createAttachmentPart method that takes a DataHandler argument.

// Create attachment part for image
URL url = new URL("file:///../xml-pic.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment2 =

message.createAttachmentPart(dataHandler);
attachment2.setContentId("attached_image");

message.addAttachmentPart(attachment2);

The example then retrieves the attachments from the message. It displays the con-
tentId and contentType attributes of each attachment and the contents of the text
attachment.

Running Attachments
To run the application, follow these steps:

1. If you have not already opened the Attachments project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial14/examples/saaj/, select the Attachments project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the

SOAPFAULTTEST.JAVA 101
“activation.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server
installation, select activation.jar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. Right-click the project in the Projects window, choose Properties, click
Run, and type addr.txt in the Arguments field. This file is included with the
application. Click OK.

4. In the Projects window, right-click the project and choose Run Project.
5. In the Output window, the application displays the following output:

run:
Attachment attached_text has content type text/plain
Attachment contains:
Update address for Sunny Skies, Inc., to
10 Upbeat Street
Pleasant Grove, CA 95439

Attachment attached_image has content type image/jpeg

SOAPFaultTest.java
The example SOAPFaultTest.java, based on the code fragments in the sections Cre-
ating and Populating a SOAPFault Object (page 82) and Retrieving Fault
Information (page 83), creates a message that has a SOAPFault object. It then
retrieves the contents of the SOAPFault object and prints them. You will find the
code for SOAPFaultTest in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/soapfaulttest/

Running SOAPFaultTest
To run the application, follow these steps:

1. If you have not already opened the Attachments project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial14/examples/saaj/, select the soapfaulttest project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server

../examples/saaj/fault/src/SOAPFaultTest.java

102 SOAP WITH ATTACHMENTS API FOR JAVA
installation, select activation.jar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. In the Projects window, right-click the project and choose Run Project.
4. In the Output window, the application displays the following output (line

breaks have been inserted in the message for readability):

Here is what the XML message looks like:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/><SOAP-ENV:Body>
<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Message does not have necessary info</faultstring>
<faultactor>http://gizmos.com/order</faultactor>
<detail>
<PO:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>
<PO:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>
</detail></SOAP-ENV:Fault>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP fault contains:
 Fault code = SOAP-ENV:Client
 Local name = Client
 Namespace prefix = SOAP-ENV, bound to
http://schemas.xmlsoap.org/soap/envelope/
 Fault string = Message does not have necessary info
 Fault actor = http://gizmos.com/order
 Detail entry = Quantity element does not have a value
 Detail entry = Incomplete address: no zip code

Further Information
For more information about SAAJ, SOAP, and WS-I, see the following:

• SAAJ 1.2 specification, available from
http://java.sun.com/xml/downloads/saaj.html

• SAAJ web site:
http://java.sun.com/xml/saaj/

• WS-I Basic Profile:

http://java.sun.com/xml/downloads/saaj.html
http://java.sun.com/xml/saaj/

FURTHER INFORMATION 103
http://www.ws-i.org/Profiles/Basic/2003-08/
BasicProfile-1.0a.html

• JAXM web site:
http://java.sun.com/xml/jaxm/

http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html
http://java.sun.com/xml/jaxm/

104 SOAP WITH ATTACHMENTS API FOR JAVA

4

105
Enterprise Beans

ENTERPRISE beans are the J2EE components that implement Enterprise Java-
Beans (EJB) technology. Enterprise beans run in the EJB container, a runtime
environment within the Sun Java System Application Server Platform Edition 8
(see Figure 1–5, page 10). Although transparent to the application developer, the
EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enter-
prise beans, which form the core of transactional J2EE applications.

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods called checkInventoryLevel and orderProduct. By invoking these
methods, remote clients can access the inventory services provided by the appli-
cation.

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distrib-
uted applications. First, because the EJB container provides system-level ser-
vices to enterprise beans, the bean developer can concentrate on solving business

106 ENTERPRISE BEANS
problems. The EJB container—and not the bean developer—is responsible for
system-level services such as transaction management and security authoriza-
tion.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server provided that they use the standard APIs.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the fol-
lowing requirements:

• The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but also their location will remain transparent to the
clients.

• Transactions must ensure data integrity. Enterprise beans support transac-
tions, the mechanisms that manage the concurrent access of shared objects.

• The application will have a variety of clients. With only a few lines of
code, remote clients can easily locate enterprise beans. These clients can
be thin, various, and numerous.

TYPES OF ENTERPRISE BEANS 107
Types of Enterprise Beans
Table 4–1 summarizes the three types of enterprise beans. The following sec-
tions discuss each type in more detail.

What Is a Session Bean?
A session bean represents a single client inside the Application Server. To access
an application that is deployed on the server, the client invokes the session
bean’s methods. The session bean performs work for its client, shielding the cli-
ent from complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared; it can have only one client, in the same way that an inter-
active session can have only one user. Like an interactive session, a session bean
is not persistent. (That is, its data is not saved to a database.) When the client ter-
minates, its session bean appears to terminate and is no longer associated with
the client.

For code samples, see Chapter 6.

State Management Modes
There are two types of session beans: stateless and stateful.

Table 4–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; implements a web service

Entity Represents a business entity object that exists in persistent storage

Message-Driven Acts as a listener for the Java Message Service API, processing
messages asynchronously

108 ENTERPRISE BEANS
Stateless Session Beans
A stateless session bean does not maintain a conversational state for the client.
When a client invokes the method of a stateless bean, the bean’s instance vari-
ables may contain a state, but only for the duration of the invocation. When the
method is finished, the state is no longer retained. Except during method invoca-
tion, all instances of a stateless bean are equivalent, allowing the EJB container
to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean to secondary stor-
age. However, stateless session beans are never written to secondary storage.
Therefore, stateless beans may offer better performance than stateful beans.

A stateless session bean can implement a web service, but other types of enter-
prise beans cannot.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful
session bean, the instance variables represent the state of a unique client-bean
session. Because the client interacts (“talks”) with its bean, this state is often
called the conversational state.

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

When to Use Session Beans
In general, you should use a session bean if the following circumstances hold:

• At any given time, only one client has access to the bean instance.
• The state of the bean is not persistent, existing only for a short period (per-

haps a few hours).

• The bean implements a web service.

WHAT IS AN ENTITY BEAN? 109
Stateful session beans are appropriate if any of the following conditions are true:

• The bean’s state represents the interaction between the bean and a specific
client.

• The bean needs to hold information about the client across method invoca-
tions.

• The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several enterprise
beans. For an example, see the AccountControllerBean session bean in
Chapter 36.

To improve performance, you might choose a stateless session bean if it has any
of these traits:

• The bean’s state has no data for a specific client.
• In a single method invocation, the bean performs a generic task for all cli-

ents. For example, you might use a stateless session bean to send an email
that confirms an online order.

• The bean fetches from a database a set of read-only data that is often used
by clients. Such a bean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

What Is an Entity Bean?
An entity bean represents a business object in a persistent storage mechanism.
Some examples of business objects are customers, orders, and products. In the
Application Server, the persistent storage mechanism is a relational database.
Typically, each entity bean has an underlying table in a relational database, and
each instance of the bean corresponds to a row in that table. For code examples
of entity beans, please refer to Chapters 7 and 8.

What Makes Entity Beans Different from
Session Beans?
Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and can participate in relationships
with other entity beans.

110 ENTERPRISE BEANS
Persistence
Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the Application Server process. If you’ve worked with data-
bases, you’re familiar with persistent data. The data in a database is persistent
because it still exists even after you shut down the database server or the applica-
tions it services.

There are two types of persistence for entity beans: bean-managed and con-
tainer-managed. With bean-managed persistence, the entity bean code that you
write contains the calls that access the database. If your bean has container-man-
aged persistence, the EJB container automatically generates the necessary data-
base access calls. The code that you write for the entity bean does not include
these calls. For additional information, see the section Container-Managed
Persistence (page 111).

Shared Access
Entity beans can be shared by multiple clients. Because the clients might want to
change the same data, it’s important that entity beans work within transactions.
Typically, the EJB container provides transaction management. In this case, you
specify the transaction attributes in the bean’s deployment descriptor. You do not
have to code the transaction boundaries in the bean; the container marks the
boundaries for you. See Chapter 30 for more information.

Primary Key
Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or
primary key, enables the client to locate a particular entity bean. For more infor-
mation, see the section Primary Keys for Bean-Managed Persistence (page 204).

Relationships
Like a table in a relational database, an entity bean may be related to other entity
beans. For example, in a college enrollment application, StudentBean and Course-
Bean would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed per-
sistence than those with container-managed persistence. With bean-managed

CONTAINER-MANAGED PERSISTENCE 111
persistence, the code that you write implements the relationships. But with con-
tainer-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed per-
sistence are often referred to as container-managed relationships.

Container-Managed Persistence
The term container-managed persistence means that the EJB container handles
all database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As a result, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won’t need to modify or recompile the bean’s code. In short, your
entity beans are more portable if you use container-managed persistence than if
they use bean-managed persistence.

To generate the data access calls, the container needs information that you pro-
vide in the entity bean’s abstract schema.

Abstract Schema
Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’s persistent fields and relationships. The term abstract distinguishes this
schema from the physical schema of the underlying data store. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans Query Lan-
guage (EJB QL). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (except findByPrimaryKey).
The EJB QL query determines the query that is executed by the EJB container
when the finder method is invoked. To learn more about EJB QL, see
Chapter 29.

112 ENTERPRISE BEANS
You’ll probably find it helpful to sketch the abstract schema before writing any
code. Figure 4–1 represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed
further in the sections that follow.

Figure 4–1 A High-Level View of an Abstract Schema

Persistent Fields
The persistent fields of an entity bean are stored in the underlying data store.
Collectively, these fields constitute the state of the bean. At runtime, the EJB
container automatically synchronizes this state with the database. During
deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table’s columns.

A CustomerBean entity bean, for example, might have persistent fields such as first-
Name, lastName, phone, and emailAddress. In container-managed persistence, these
fields are virtual. You declare them in the abstract schema, but you do not code
them as instance variables in the entity bean class. Instead, the persistent fields
are identified in the code by access methods (getters and setters).

CONTAINER-MANAGED PERSISTENCE 113
Relationship Fields
A relationship field is like a foreign key in a database table: it identifies a related
bean. Like a persistent field, a relationship field is virtual and is defined in the
enterprise bean class via access methods. But unlike a persistent field, a relation-
ship field does not represent the bean’s state. Relationship fields are discussed
further in Direction in Container-Managed Relationships (page 113).

Multiplicity in Container-Managed Relationships
There are four types of multiplicities: one-to-one, one-to-many, many-to-one,
and many-to-many.

One-to-one: Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widget, StorageBinBean and WidgetBean would have a one-to-
one relationship.

One-to-many: An entity bean instance can be related to multiple instances of the
other entity bean. A sales order, for example, can have multiple line items. In the
order application, OrderBean would have a one-to-many relationship with LineItem-
Bean.

Many-to-one: Multiple instances of an entity bean can be related to a single
instance of the other entity bean. This multiplicity is the opposite of a one-to-
many relationship. In the example just mentioned, from the perspective of
LineItemBean the relationship to OrderBean is many-to-one.

Many-to-many: The entity bean instances can be related to multiple instances of
each other. For example, in college each course has many students, and every
student may take several courses. Therefore, in an enrollment application, Course-
Bean and StudentBean would have a many-to-many relationship.

Direction in Container-Managed Relationships
The direction of a relationship can be either bidirectional or unidirectional. In a
bidirectional relationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows” about its related object. For example, if OrderBean knows what LineItem-
Bean instances it has and if LineItemBean knows what OrderBean it belongs to, then
they have a bidirectional relationship.

114 ENTERPRISE BEANS
In a unidirectional relationship, only one entity bean has a relationship field that
refers to the other. For example, LineItemBean would have a relationship field that
identifies ProductBean, but ProductBean would not have a relationship field for
LineItemBean. In other words, LineItemBean knows about ProductBean, but ProductBean
doesn’t know which LineItemBean instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query can navigate from LineItemBean to ProductBean but cannot navi-
gate in the opposite direction. For OrderBean and LineItemBean, a query could navi-
gate in both directions, because these two beans have a bidirectional
relationship.

When to Use Entity Beans
You should probably use an entity bean under the following conditions:

• The bean represents a business entity and not a procedure. For example,
CreditCardBean would be an entity bean, but CreditCardVerifierBean would be a
session bean.

• The bean’s state must be persistent. If the bean instance terminates or if the
Application Server is shut down, the bean’s state still exists in persistent
storage (a database).

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows J2EE applications to
process messages asynchronously. It normally acts as a JMS message listener,
which is similar to an event listener except that it receives JMS messages instead
of events. The messages can be sent by any J2EE component—an application
client, another enterprise bean, or a web component—or by a JMS application or
system that does not use J2EE technology. Message-driven beans can process
either JMS messages or other kinds of messages.

For a simple code sample, see Chapter 9. For more information about using mes-
sage-driven beans, see Using the JMS API in a J2EE Application (page 1248)
and Chapter 34.

WHAT MAKES MESSAGE-DRIVEN BEANS DIFFERENT FROM SESSION AND ENTITY BEANS? 115
What Makes Message-Driven Beans Different
from Session and Entity Beans?
The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the section Defining Client Access with
Interfaces (page 116). Unlike a session or entity bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

• A message-driven bean’s instances retain no data or conversational state
for a specific client.

• All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be pro-
cessed concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a JMS API connec-
tion, an open database connection, or an object reference to an enterprise bean
object.

Client components do not locate message-driven beans and invoke methods
directly on them. Instead, a client accesses a message-driven bean through JMS
by sending messages to the message destination for which the message-driven
bean class is the MessageListener. You assign a message-driven bean’s destination
during deployment by using Application Server resources.

Message-driven beans have the following characteristics:

• They execute upon receipt of a single client message.
• They are invoked asynchronously.
• They are relatively short-lived.
• They do not represent directly shared data in the database, but they can

access and update this data.
• They can be transaction-aware.
• They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage
method to process the message. The onMessage method normally casts the mes-

116 ENTERPRISE BEANS
sage to one of the five JMS message types and handles it in accordance with the
application’s business logic. The onMessage method can call helper methods, or it
can invoke a session or entity bean to process the information in the message or
to store it in a database.

A message can be delivered to a message-driven bean within a transaction con-
text, so all operations within the onMessage method are part of a single transac-
tion. If message processing is rolled back, the message will be redelivered. For
more information, see Chapter 9.

When to Use Message-Driven Beans
Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

Defining Client Access with Interfaces
The material in this section applies only to session and entity beans and not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client can access a session or an entity bean only through the methods defined
in the bean’s interfaces. These interfaces define the client’s view of a bean. All
other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, and database access calls—are hidden from the client.

Well-designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they also allow the beans to change internally without
affecting the clients. For example, even if you change your entity beans from
bean-managed to container-managed persistence, you won’t have to alter the cli-
ent code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it is important that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access allowed by the enterprise beans: remote, local, or web ser-
vice.

REMOTE CLIENTS 117
Remote Clients
A remote client of an enterprise bean has the following traits:

• It can run on a different machine and a different Java virtual machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different JVM.)

• It can be a web component, an application client, or another enterprise
bean.

• To a remote client, the location of the enterprise bean is transparent.

To create an enterprise bean that has remote access, you must code a remote
interface and a home interface. The remote interface defines the business meth-
ods that are specific to the bean. For example, the remote interface of a bean
named BankAccountBean might have business methods named deposit and credit.
The home interface defines the bean’s life-cycle methods: create and remove. For
entity beans, the home interface also defines finder methods and home methods.
Finder methods are used to locate entity beans. Home methods are business
methods that are invoked on all instances of an entity bean class. Figure 4–2
shows how the interfaces control the client’s view of an enterprise bean.

Figure 4–2 Interfaces for an Enterprise Bean with Remote Access

118 ENTERPRISE BEANS
Local Clients
A local client has these characteristics:

• It must run in the same JVM as the enterprise bean it accesses.
• It can be a web component or another enterprise bean.
• To the local client, the location of the enterprise bean it accesses is not

transparent.
• It is often an entity bean that has a container-managed relationship with

another entity bean.

To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods, and the local home interface defines its life-cycle and finder
methods.

Local Interfaces and Container-Managed
Relationships
If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not
a bean is the target. In Figure 4–1, for example, ProductBean is the target of a uni-
directional relationship with LineItemBean. Because LineItemBean accesses Product-
Bean locally, ProductBean must have the local interfaces. LineItemBean also needs
local interfaces, not because of its relationship with ProductBean, but because it is
the target of a relationship with OrderBean. And because the relationship between
LineItemBean and OrderBean is bidirectional, both beans must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB JAR file. The primary benefit
of this locality is increased performance: local calls are usually faster than
remote calls.

DECIDING ON REMOTE OR LOCAL ACCESS 119
Deciding on Remote or Local Access
Whether to allow local or remote access depends on the following factors.

• Container-managed relationships: If an entity bean is the target of a con-
tainer-managed relationship, it must use local access.

• Tight or loose coupling of related beans: Tightly coupled beans depend on
one another. For example, a completed sales order must have one or more
line items, which cannot exist without the order to which they belong. The
OrderBean and LineItemBean entity beans that model this relationship are
tightly coupled. Tightly coupled beans are good candidates for local
access. Because they fit together as a logical unit, they probably call each
other often and would benefit from the increased performance that is pos-
sible with local access.

• Type of client: If an enterprise bean is accessed by application clients, then
it should allow remote access. In a production environment, these clients
almost always run on different machines than the Application Server does.
If an enterprise bean’s clients are web components or other enterprise
beans, then the type of access depends on how you want to distribute your
components.

• Component distribution: J2EE applications are scalable because their
server-side components can be distributed across multiple machines. In a
distributed application, for example, the web components may run on a
different server than do the enterprise beans they access. In this distributed
scenario, the enterprise beans should allow remote access.

• Performance: Because of factors such as network latency, remote calls
may be slower than local calls. On the other hand, if you distribute compo-
nents among different servers, you might improve the application’s overall
performance. Both of these statements are generalizations; actual perfor-
mance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect perfor-
mance.

If you aren’t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility. In the future you
can distribute your components to accommodate growing demands on your
application.

Although it is uncommon, it is possible for an enterprise bean to allow both
remote and local access. Such a bean would require both remote and local inter-
faces.

120 ENTERPRISE BEANS
Web Service Clients
A web service client can access a J2EE application in two ways. First, the client
can access a web service created with JAX-RPC. (For more information on JAX-
RPC, see Chapter 2, Building Web Services with JAX-RPC, page 29.) Second, a
web service client can invoke the business methods of a stateless session bean.
Other types of enterprise beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web ser-
vice client can access a stateless session bean, whether or not the client is written
in the Java programming language. The client doesn’t even “know” what tech-
nology implements the service—stateless session bean, JAX-RPC, or some other
technology. In addition, enterprise beans and web components can be clients of
web services. This flexibility enables you to integrate J2EE applications with
web services.

A web service client accesses a stateless session bean through the bean’s web
service endpoint interface. Like a remote interface, a web service endpoint inter-
face defines the business methods of the bean. In contrast to a remote interface, a
web service endpoint interface is not accompanied by a home interface, which
defines the bean’s life-cycle methods. The only methods of the bean that may be
invoked by a web service client are the business methods that are defined in the
web service endpoint interface.

For a code sample, see The HelloService Web Service Example (page 153).

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters but also to
method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With
remote calls, the client and bean operate on different copies of a parameter
object. If the client changes the value of the object, the value of the copy in the
bean does not change. This layer of isolation can help protect the bean if the cli-
ent accidentally modifies the data.

THE CONTENTS OF AN ENTERPRISE BEAN 121
In a local call, both the client and the bean can modify the same parameter
object. In general, you should not rely on this side effect of local calls. Perhaps
someday you will want to distribute your components, replacing the local calls
with remote ones.

As with remote clients, web service clients operate on different copies of param-
eters than does the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in
remote methods should be relatively coarse-grained. A coarse-grained object
contains more data than a fine-grained one, so fewer access calls are required.
For the same reason, the parameters of the methods called by web service clients
should also be coarse-grained.

For example, suppose that a CustomerBean entity bean is accessed remotely. This
bean would have a single getter method that returns a CustomerDetails object,
which encapsulates all of the customer’s information. But if CustomerBean is to be
accessed locally, it could have a getter method for each instance variable: getFirst-
Name, getLastName, getPhoneNumber, and so forth. Because local calls are fast, the
multiple calls to these finer-grained getter methods would not significantly
degrade performance.

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

• Deployment descriptor: An XML file that specifies information about the
bean such as its persistence type and transaction attributes. The deploytool
utility creates the deployment descriptor when you step through the New
Enterprise Bean wizard.

• Enterprise bean class: Implements the methods defined in the following
interfaces.

• Interfaces: The remote and home interfaces are required for remote access.
For local access, the local and local home interfaces are required. For
access by web service clients, the web service endpoint interface is
required. See the section Defining Client Access with
Interfaces (page 116). (Please note that these interfaces are not used by
message-driven beans.)

122 ENTERPRISE BEANS
• Helper classes: Other classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and can be used for dif-
ferent applications. To assemble a J2EE application, you package one or more
modules—such as EJB JAR files—into an EAR file, the archive file that holds
the application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the Application Server. You can
also deploy an EJB JAR that is not contained in an EAR file.

Figure 4–3 Structure of an Enterprise Bean JAR

Naming Conventions for Enterprise Beans
Because enterprise beans are composed of multiple parts, it’s useful to follow a
naming convention for your applications. Table 4–2 summarizes the conventions
for the example beans in this tutorial.

THE LIFE CYCLES OF ENTERPRISE BEANS 123
The Life Cycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean—session, entity, or message-driven—has a differ-
ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you
should skip this section and try out the code examples first.

The Life Cycle of a Stateful Session Bean
Figure 4–4 illustrates the stages that a session bean passes through during its life-
time. The client initiates the life cycle by invoking the create method. The EJB
container instantiates the bean and then invokes the setSessionContext and ejbCreate
methods in the session bean. The bean is now ready to have its business methods
invoked.

Table 4–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name (DDa)

a.DD means that the item is an element in the bean’s deployment descriptor.

<name>Bean AccountBean

EJB JAR display name (DD) <name>JAR AccountJAR

Enterprise bean class <name>Bean AccountBean

Home interface <name>Home AccountHome

Remote interface <name> Account

Local home interface <name>LocalHome AccountLocalHome

Local interface <name>Local AccountLocal

Abstract schema (DD) <name> Account

124 ENTERPRISE BEANS
Figure 4–4 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passi-
vate, the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the bean’s ejbPassivate method immediately
before passivating it. If a client invokes a business method on the bean while it is
in the passive stage, the EJB container activates the bean, calls the bean’s ejbActi-
vate method, and then moves it to the ready stage.

At the end of the life cycle, the client invokes the remove method, and the EJB
container calls the bean’s ejbRemove method. The bean’s instance is ready for gar-
bage collection.

Your code controls the invocation of only two life-cycle methods: the create and
remove methods in the client. All other methods in Figure 4–4 are invoked by the
EJB container. The ejbCreate method, for example, is inside the bean class, allow-
ing you to perform certain operations right after the bean is instantiated. For
example, you might wish to connect to a database in the ejbCreate method. See
Chapter 31 for more information.

The Life Cycle of a Stateless Session Bean
Because a stateless session bean is never passivated, its life cycle has only two
stages: nonexistent and ready for the invocation of business methods. Figure 4–5
illustrates the stages of a stateless session bean.

THE LIFE CYCLE OF AN ENTITY BEAN 125
Figure 4–5 Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean
Figure 4–6 shows the stages that an entity bean passes through during its life-
time. After the EJB container creates the instance, it calls the setEntityContext
method of the entity bean class. The setEntityContext method passes the entity con-
text to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes the create method, causing the EJB container to call the ejbCreate
and ejbPostCreate methods. On the second path, the EJB container invokes the
ejbActivate method. While an entity bean is in the ready stage, an it’s business
methods can be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
can invoke the remove method, which causes the EJB container to call the ejbRe-
move method. Second, the EJB container can invoke the ejbPassivate method.

126 ENTERPRISE BEANS
Figure 4–6 Life Cycle of an Entity Bean

At the end of the life cycle, the EJB container removes the instance from the
pool and invokes the unsetEntityContext method.

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, the ejbCreate and ejbActivate methods must assign a value
to the primary key. If the primary key is incorrect, the ejbLoad and ejbStore
methods cannot synchronize the instance variables with the database. In the
section The SavingsAccountBean Example (page 167), the ejbCreate method
assigns the primary key from one of the input parameters. The ejbActivate method
sets the primary key (id) as follows:

id = (String)context.getPrimaryKey();

THE LIFE CYCLE OF A MESSAGE-DRIVEN BEAN 127
In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in the ejbPassivate method.

The Life Cycle of a Message-Driven Bean
Figure 4–7 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For
each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls the setMessageDrivenContext method to pass the context object to the
instance.

2. It calls the instance’s ejbCreate method.

Figure 4–7 Life Cycle of a Message-Driven Bean

Like a stateless session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the ejbRemove method. The bean’s
instance is then ready for garbage collection.

128 ENTERPRISE BEANS
Further Information
For further information on Enterprise JavaBeans technology, see the following:

• Enterprise JavaBeans 2.1 specification:
http://java.sun.com/products/ejb/docs.html

• The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

5

129
Getting Started with
Enterprise Beans

THIS chapter shows how to develop, deploy, and run a simple J2EE applica-
tion named ConverterApp. The purpose of ConverterApp is to calculate cur-
rency conversions between yen and eurodollars. ConverterApp consists of an
enterprise bean, which performs the calculations, and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the J2EE application: ConverterApp.
2. Create the enterprise bean: ConverterBean.
3. Create the web client in ConverterWAR.
4. Deploy ConverterApp onto the server.
5. Using a browser, run the web client.

Before proceeding, make sure that you’ve done the following:

• Read Chapter 1.
• Become familiar with enterprise beans (see Chapter 4).

130 GETTING STARTED WITH ENTERPRISE BEANS
Creating the J2EE Application
In this section, you’ll create a project named ConverterApp to store the J2EE
application.

1. In the IDE, choose File→New Project (Ctrl-Shift-N).
2. From the Enterprise category, select Enterprise Application and click

Next.
3. Name the project ConverterApp, specify a location for the project and

click Finish.
This wizard actually creates three projects: one for the enterprise application,
one for the EJB module, and one for the web module.

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called Converter-
Bean. The source code for ConverterBean is in the
<INSTALL>/j2eetutorial14/examples/ejb/converter/ConverterApp/Con-
verterApp-ejb/ directory.

Creating ConverterBean requires these steps:

1. Generating the bean classes and interfaces from a NetBeans template
2. Adding business methods to the enterprise bean.

Creating the ConverterBean Enterprise Bean
The enterprise bean templates automatically create all of the classes and inter-
faces necessary for the enterprise bean and register the enterprise bean in the
EJB module’s deployment descriptor.

1. In the Projects window, right-click the ConverterApp-EJBModule node
and choose New→Session Bean.

2. In the EJB Name field, type Converter. In the Package field, type con-
verter. Set the bean to be stateless and remote and click Finish.

CREATING THE CONVERTERBEAN ENTERPRISE BEAN 131
The IDE creates the following classes:

• ConverterBean.java. The enterprise bean class. All of the EJB infra-
structure methods are generated automatically and are hidden in a code
fold.

• ConverterRemote.java. The remote interface. The remote interface usu-
ally defines the business methods that a client can call. The business meth-
ods are implemented in the enterprise bean code. Because the IDE enforces
best coding practices, it actually registers all of the business methods in a
remote business interface, which the remote interface extends.

• ConverterRemoteBusiness.java. The business interface. Presently this
class is empty, but as we add business methods to the bean this class will
be populated.

• ConverterRemoteHome.java. The home interface. A home interface
defines the methods that allow a client to create, find, or remove an enter-
prise bean.

Adding Business Methods
1. Expand the Enterprise JavaBeans node, right-click the ConverterSB node,

and choose Add→Business Method.
2. In the dialog box, type dollarToYen in the Name field and BigDecimal in

the Return Type field. In the Parameters tab, click Add to add a BigDeci-
mal parameter named dollars. Then click OK to add the business method.

3. Repeat steps 1 and 2 to add a business method called yenToEuro that
returns a BigDecimal and has one BigDecimal parameter named yen.

4. Press Alt-Shift-F to generate an import statement for java.math.bigDec-
imal.

5. Expand the Source Packages node and the converter package node. Dou-
ble-click ConverterRemoteBusiness.java to open it in the Source Edi-
tor. Notice that the IDE has automatically declared the dollarToYen and
yenToEuro methods in the interface. Press Alt-Shift-F to generate an
import statement for java.math.bigDecimal.

6. In ConverterBean.java, add the following field declarations right below
the class declaration:
BigDecimal yenRate = new BigDecimal("121.6000");
BigDecimal euroRate = new BigDecimal("0.0077");

7. In ConverterBean.java, implement the dollarToYen and yenToEuro
methods as follows:

132 GETTING STARTED WITH ENTERPRISE BEANS
public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal.ROUND_UP);

}

The full source code for the ConverterBean class follows.

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class ConverterBean implements SessionBean {

private SessionContext context;
BigDecimal yenRate = new BigDecimal("121.6000");
BigDecimal euroRate = new BigDecimal("0.0077");

public void setSessionContext(SessionContext aContext) {
context = aContext;

}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbCreate() {}

public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2,BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2,BigDecimal.ROUND_UP);

 }

}

CREATING THE WEB CLIENT 133
Creating the Web Client
The web client is contained in the <INSTALL>/j2eetutorial14/exam-
ples/ejb/converter/ConverterApp/ConverterApp-war/ directory. The web
client is implemented in a servlet, ConverterServlet.java.

Coding the Web Client
When you access an enterprise bean from a servlet, the IDE provides tools that
do much of the work for you. For instance, the IDE automatically generates
lookup code for the bean and adds the bean reference to the web module’s
deployment descriptors.

1. In the Projects window, right-click the ConverterApp-WebModule node
and choose New→Servlet.

2. Name the servlet ConverterServlet and place it in a package called con-
verter. Click Next.

3. Leave the default settings for all of the information in the last page of the
wizard and click Finish.

Locating the Home Interface
1. In the Source Editor, right-click anywhere in the body of the Convert-

erServlet class and choose Enterprise Resources→Call Enterprise Bean.
2. In the dialog box, select ConverterSB and click OK. The IDE generates the

lookupConverterBean method at the bottom of the file.
The IDE adds the lookupConverterBean method to the servlet and registers the
bean reference in the web module’s deployment descriptors. The lookup code
does the following:

1. Create an initial naming context.
javax.naming.Context c = new javax.naming.InitialContext();

The Context interface is part of the Java Naming and Directory Interface
(JNDI). A naming context is a set of name-to-object bindings. A name
that is bound within a context is the JNDI name of the object.

An InitialContext object, which implements the Context interface,
provides the starting point for the resolution of names. All naming opera-
tions are relative to a context.

134 GETTING STARTED WITH ENTERPRISE BEANS
2. Obtain the environment naming context of the web client and retrieves the
object bound to the name ejb/ConverterBean.
Object remote = c.lookup("java:comp/env/ejb/ConverterBean");

The java:comp/env name is bound to the environment naming context of
the ConverterApp-WebModule component.

The ejb/ConverterBean name is bound to an enterprise bean reference,
a logical name for the home of an enterprise bean. In this case, the
ejb/ConverterBean name refers to the ConverterRemoteHome object.
The names of enterprise beans should reside in the java:comp/env/ejb
subcontext.

3. Narrow the reference to a ConverterRemoteHome object.

converter.ConverterRemoteHome rv =

(converter.ConverterRemoteHome)

javax.rmi.PortableRemoteObject.narrow(remote,

converter.ConverterRemoteHome.class);

4. Creates an instance of the ConverterBean enterprise bean:
return rv.create();

Invoking Business Methods
1. In the Source Editor, go to the processRequest method and remove the

comment symbols that comment out the text between PrintWriter out =
response.getWriter(); and out.close();. (You can put the insertion
point on each line and press Ctrl-E to delete the entire line.)

2. Add the following code in the body of the servlet, between
out.println("<body>"); and out.println("</body>");:
out.println("<h1><center>Converter</center></h1>");
out.println("<hr>");
out.println("<p>Enter an amount to convert:</p>");
out.println("<form method=\"get\">");
out.println("<input type=\"text\"

name=\"amount\" size=\"25\">");
out.println("
");
out.println("<p>");
out.println("<input type=\"submit\" value=\"Submit\">");
out.println("<input type=\"reset\" value=\"Reset\">");
out.println("</form>");
String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

SPECIFYING THE ENTERPRISE APPLICATION’S DEFAULT URL 135
try {
converter.ConverterRemote converter;
converter = lookupConverterBean();

java.math.BigDecimal d =
new java.math.BigDecimal(amount);

out.println("<p>");
out.println("<p>");
out.println(amount + " Dollars are "

+ converter.dollarToYen(d) + " Yen.");
out.println("<p>");
out.println(amount + " Yen are "

+ converter.yenToEuro(d) + " Euro.");

converter.remove();
} catch (Exception e){

out.println("Cannot lookup or execute EJB!");
}

}

Specifying the Enterprise Application’s
Default URL

By default, the IDE opens the web module’s index.jsp page when you run the
enterprise application. You need to change this setting to open ConverterServ-
let.java instead.

1. In the Projects window, right-click the ConverterApp project node and
choose Properties.

2. Click Run in the left pane of the dialog box.
3. Type /ConverterServlet in the Relative URL field and click OK.

Deploying the J2EE Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. In the Projects window, right-click the ConverterApp node and choose
Run Project.

136 GETTING STARTED WITH ENTERPRISE BEANS
The IDE does all of the following:

• Starts the application server if it is not already started.
• Builds the ConverterApp project and the projects for each of its modules.

You can view the build ouputs in the Files window.
• Deploys converterapp.ear to the application server.
• Opens your default web browser at the following URL:

http://<host>:<port>/ConverterApp-WebModule/ConverterServlet

Running the Web Client
As stated above, the IDE automatically runs the web client every time you run
the ConverterApp project. Once the enterprise application is deployed to a run-
ning application server, you can access the application client at any time by
pointing your browser at the following URL. Replace <host> with the name of
the host running the Application Server. If your browser is running on the same
host as the Application Server, you can replace <host> with localhost.

http://<host>:<port>/ConverterApp-WebModule/ConverterServlet

After entering 100 in the input field and clicking Submit, you should see the
screen shown in Figure 5–1.

MODIFYING THE J2EE APPLICATION 137
Figure 5–1 ConverterApp Web Client

Modifying the J2EE Application
The Application Server and the NetBeans IDE support iterative development.
Whenever you make a change to a J2EE application, you must redeploy the
application.

Modifying a Deployment Setting
To modify a deployment setting of ConverterApp, you edit the appropriate field
in the deployment descriptors and redeploy. For example, to change a JNDI
name from ATypo to ConverterBean, you would follow these steps.

1. In the Projects window, expand the Configuration Files node for the Con-
verterApp-EJBModule project and double-click sun-ejb-jar.xml.

2. In the left pane of the deployment descriptor editor, expand the Sun Con-
figuration node and select ConverterBean [EJB].

3. In the JNDI Name field, enter ejb/ConverterBean.

138 GETTING STARTED WITH ENTERPRISE BEANS
4. In the Projects window, right-click the ConverterApp project and choose
Run Project. The IDE saves all the files, rebuilds the project, and redeploys
it to the application server.

6

139
Session Bean Examples

SESSION beans are powerful because they extend the reach of your clients into
remote servers. In Chapter 5, you built a stateless session bean named Convert-
erBean. This chapter examines the source code of three more session beans:

• CartBean: a stateful session bean that is accessed by a remote client
• HelloServiceBean: a stateless session bean that implements a web service
• TimerSessionBean: a stateless session bean that sets a timer

The CartBean Example Application
The CartBean session bean represents a shopping cart in an online bookstore.
The bean’s client can add a book to the cart, remove a book, or retrieve the cart’s
contents. To construct the CartBean example, you need to create the following
components:

• Cart EJB module
• CartClient application

The Cart EJB module contains the session bean and the interfaces. When creat-
ing the session bean, the IDE creates the following components:

• Session bean class (CartBean)
• Remote interface (CartRemote)
• Home interface (CartRemoteHome)
• Business interface (CartRemoteBusiness)

140 SESSION BEAN EXAMPLES
All session beans require a session bean class. All enterprise beans that permit
remote access must have a home and a remote interface.

To meet the needs of a specific application, an enterprise bean may also need
some helper classes. The CartBean session bean uses two helper classes
(BookException and IdVerifier) which are discussed in the section Helper
Classes.

The source code for this example is located in the
<INSTALL>/j2eetutorial14/examples/ejb/cart/ directory.

Creating the Cart EJB Project
In the IDE, you first need to create a project for the EJB module for the session
bean.

1. Choose File→New Project (Ctrl-Shift-N).
2. In the New Project wizard, choose the Enterprise template category, select

EJB Module in the Projects pane and click Next.
3. Type Cart as the Project Name, specify a Project Location and click Fin-

ish.
The Cart module appears in the Projects window of the IDE. The next step is to
add a session bean to the module.

Creating the Session Bean
For this example, you create a session bean class called CartBean. Like any ses-
sion bean, the CartBean class must meet these requirements:

• It implements the SessionBean interface.
• The class is defined as public.
• The class cannot be defined as abstract or final.
• It implements one or more ejbCreate methods.
• It implements the business methods.
• It contains a public constructor with no parameters.
• It must not define the finalize method.

CREATING THE CART EJB PROJECT 141
When you create the session bean in the IDE, the required infrastructure methods
and session bean interfaces are generated automatically.

1. Right-click the Cart node in the Projects window and choose New→Ses-
sion Bean.

2. Type Cart as the EJB Name, cart as the Package name, and select State-
ful and Remote as the session and interface types (deselect the Local inter-
face type). Then click Finish.

The IDE creates the Cart session bean under the Enterprise Beans node and
opens the CartBean class in the Source Editor. You can see that the CartBean
class automatically implements the remote interfaces and also creates the
required session bean infrastructure methods.

The Cart session bean interface declares the ejbRemove, ejbActivate, ejbPas-
sivate, and setSessionContext methods. The CartBean class doesn’t use
these methods, but it must implement them because they are declared in the Ses-
sionBean interface. Consequently, these methods are empty in the CartBean
class. These required methods are hidden in the code fold in the Source Editor.
Click the + sign to the left of the code fold to inspect these methods.

You now need to add some private fields to the class declaration. Add the fol-
lowing to the class, after the private javax.ejb.SessionContext context;
statement:

private String customerName;
private String customerId;
private Vector contents;

When you add the private Vector contents field, the IDE will indicate an
error because you have not yet imported the java.util.vector library. To add
the necessary import statements, place the insertion point anywhere in the class
and press Alt-Shift-F to generate the following import statements:

import java.util.Vector;
import javax.ejb.CreateException;

You can now start adding the create methods and business methods to the class,
but for this example you should first create the two helper classes used by the
application.

142 SESSION BEAN EXAMPLES
Helper Classes
The CartBean session bean has two helper classes: BookException and IdVeri-
fier. The BookException is thrown by the removeBook method, and the IdVer-
ifier validates the customerId in one of the ejbCreate methods. Helper
classes must reside in the EJB JAR file that contains the enterprise bean class.
You will use the IDE’s Java Exception wizard to create the BookException
class, then you will create a new Java class and add the code for the IdVerifier
helper class

1. Right-click the Source Packages node and choose New→Java Exception.
2. Type BookException as the Class Name and exception as the Package

name, ensuring that Source Packages is selected as the Location, and click
Finish.

The IDE generates the BookException class and opens the class in the Source
Editor. The class has the following code:

package exception;

public class BookException extends java.lang.Exception{

 /** Creates a new instance of BookException */
public BookException() {
}

/**
 * Constructs an instance of <code>BookException</code> with

the specified detail message.
 * @param msg the detail message.
 */
public BookException(String msg) {

super(msg);
}

}

Now you create the second helper class called IdVerifier.

1. Right-click the Source Packages node and choose New→Java Class.
2. Type IdVerifier as the Class Name and util as the Package name, ensur-

ing that Source Packages is selected as the Location, and click Finish.

CREATING THE CART EJB PROJECT 143
3. In the Source Editor, add the following method to the method in the IdVer-
ifier class:

public boolean validate(String id) {
boolean result = true;

for(int i = 0; i < id.length(); i++) {
if(Character.isDigit(id.charAt(i)) == false)

result = false;
}
return result;

}

Now that you have created the helper classes, you can add the create methods
and business methods to the CartBean class. When you add the methods, the
IDE adds the appropriate code to the interfaces.

The ejbCreate Methods
You will now add two create methods to the CartBean class. To add the create
methods in the IDE, use the Add Create Method contextual menu to generate the
methods and add the appropriate code to the interfaces.

1. In the Source Editor, right-click in the body of the CartBean class and
select EJB Methods →Add Create Method from the contextual menu.

2. Type create in the Name field, ensure that the Remote box is selected so
that the method is called in the remote interfaces and click Add in the
parameter tab.

3. For the new parameter, select java.lang.String for the Type, type per-
son in the Name field, and then click OK to close each dialog box.

4. The IDE adds the ejbCreate method to the CartBean class.
5. Now add the following code to the create method:

if (person == null) {
throw new CreateException("Null person not

allowed.");
} else {

customerName = person;
}
customerId = "0";
contents = new Vector();

144 SESSION BEAN EXAMPLES
6. You will now add a second create method to the CartBean class. Follow
steps 1-5 above for generating a create method, this time adding the fol-
lowing two parameters, and in this order:
• java.lang.String person

• java.lang.String id

7. Add the following code to the method you created in step 6:

if (person == null) {
throw new CreateException("Null person not

allowed.");
} else {

customerName = person;
}
customerId = "0";
contents = new Vector();

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {
customerId = id;
} else {
throw new CreateException("Invalid id: "+ id);
}
contents = new Vector();

Because an enterprise bean runs inside an EJB container, a client cannot directly
instantiate the bean. Only the EJB container can instantiate an enterprise bean.
During instantiation, the example program performs the following steps.

1. The client invokes a create method on the home object:
Cart shoppingCart = home.create("Duke DeEarl","123");

2. The EJB container instantiates the enterprise bean.
3. The EJB container invokes the appropriate ejbCreate method in Cart-

Bean.

public void ejbCreate(java.lang.String person,
java.lang.String id)throws CreateException {

Typically, an ejbCreate method initializes the state of the enterprise bean. The
preceding ejbCreate method, for example, initializes the customerName and
customerId variables by using the arguments passed by the ejbCreate method.

CREATING THE CART EJB PROJECT 145
An enterprise bean must have one or more ejbCreate methods. The signatures
of the methods must meet the following requirements:

• The access control modifier must be public.
• The return type must be void.
• If the bean allows remote access, the arguments must be legal types for the

Java Remote Method Invocation (Java RMI) API.
• The modifier cannot be static or final.

The throws clause can include the javax.ejb.CreateException and other
exceptions that are specific to your application. The ejbCreate method usually
throws a CreateException if an input parameter is invalid.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The
client invokes business methods on the remote object reference that is returned
by the ejbCreate method. From the client’s perspective, the business methods
appear to run locally, but they actually run remotely in the session bean. The
business methods that a client can invoke are declared in the business interface.
The following code snippet shows how the CartClient program invokes the
business methods:

Cart shoppingCart = home.create("Duke DeEarl", "123");
...
shoppingCart.addBook("The Martian Chronicles");
shoppingCart.removeBook("Alice In Wonderland");
bookList = shoppingCart.getContents();

The signature of a business method must conform to these rules:

• The method name must not conflict with one defined by the EJB architec-
ture. For example, you cannot call a business method ejbCreate or
ejbActivate.

• The access control modifier must be public.
• If the bean allows remote access, the arguments and return types must be

legal types for the Java RMI API.
• The modifier must not be static or final.

When you add business methods in the IDE, you can use the Add Business
Method contextual menu to generate the methods. When you do this, the IDE

146 SESSION BEAN EXAMPLES
adds the appropriate code to the interfaces. In this example, the business meth-
ods are added to the CartBean class and the CartRemoteBusiness interface.

1. In the Source Editor, right-click in the body of the CartBean class and
select EJB Methods →Add Business Method from the contextual menu to
open the Add Business Method dialog box.

2. Enter addBook in the Name field, select void as the Return type, and
ensure that the Remote box is selected so that the method is called in the
remote interfaces. Add a parameter and select java.lang.String for the
Type, enter title in the Name field, and click OK in each dialog box to
generate the method.

3. In the Source Editor, edit the addBook business method in the CartBean
class so that the method looks like this:

public void addBook(java.lang.String title) {
contents.add(title);

}

Now follow the steps above to create the removeBook and getContents business
methods with the following code:

public void removeBook(java.lang.String title) throws
BookException {
 boolean result = contents.remove(title);
 if (result == false) {
 throw new BookException(title + "not in cart.");
 }

}

public Vector getContents() {
 return contents;

}

The throws clause can include exceptions that you define for your application.
The removeBook method, for example, throws the BookException if the book is
not in the cart. To add the exception in the IDE using the Add Business Method
dialog box, click Add in the Exceptions tab and type BookException.

When creating the getContents business method in the IDE, you can type
Vector in the Return field in the Add Business Method dialog box.

To indicate a system-level problem, such as the inability to connect to a data-
base, a business method should throw the javax.ejb.EJBException. When a
business method throws an EJBException, the container wraps it in a RemoteEx-

SESSION BEAN INTERFACES 147
ception, which is caught by the client. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of
RuntimeException, you do not need to include it in the throws clause of the
business method.

Managing Your Import Statements
After you have added your create methods and business methods, you need to fix
your import statements. Import statements can be added manually, or the IDE
can check and fix any import statements in the class. Place the insertion point
anywhere in the body of the class in the Source Editor and press Alt-Shift-F to
generate the necessary import statements. The IDE removes any unused import
statements and adds any missing important statements.

Your import statements for the CartBean class should contain the following:

import exception.BookException;
import java.util.Vector;
import javax.ejb.CreateException;
import util.IdVerifier;

Notice that the IDE adds the import statements for our two helper classes.

You may need to fix or add import statements in the business interfaces. In the
CartBean example, you need to fix the imports for the remote business interface
(CartRemoteBusiness).

Session Bean Interfaces
When you create a session bean in the IDE, the IDE generates the bean structure
according to the best practice EJB design patterns. This includes the creation of
the bean interfaces. Because the CartBean example uses a remote interface and
does not need a local interface, the IDE creates the following interfaces:

• Home interface (CartRemoteHome)
• Business interface (CartRemoteBusiness)
• Remote interface (CartRemote)

A session bean may have a local interface instead of, or in addition to, a remote
interface. Generally, a local interface is used when the bean is to be used in the
same JVM and a remote interface is used when the bean is to be used in a distrib-
uted environment.

148 SESSION BEAN EXAMPLES
Home Interface
A home interface extends the javax.ejb.EJBHome interface. For a session bean,
the purpose of the home interface is to define the create methods that a remote
client can invoke. The CartClient program, for example, invokes this create
method:

Cart shoppingCart = home.create("Duke DeEarl", "123");

Every create method in the home interface corresponds to an ejbCreate
method in the bean class. When you add create methods to your session bean
using Add Create Method, the corresponding methods are automatically added
to the home interface. The signatures of the ejbCreate methods in the CartBean
class follow:

public void ejbCreate()
...
public void ejbCreate(java.lang.String person) throws
CreateException
...
public void ejbCreate(java.lang.String person, java.lang.String
id)
 throws CreateException

Compare the ejbCreate signatures with those of the create methods in the
CartRemoteHome home interface:

public interface CartRemoteHome extends javax.ejb.EJBHome {
cart.CartRemote create() throws

java.rmi.RemoteException,
javax.ejb.CreateException;

cart.CartRemote create(java.lang.String person) throws
java.rmi.RemoteException,

javax.ejb.CreateException;
cart.CartRemote create(java.lang.String person, String id)

throws
java.rmi.RemoteException,

javax.ejb.CreateException;
}

SESSION BEAN INTERFACES 149
The signatures of the ejbCreate and create methods are similar, but they differ
in important ways. Defining the signatures of the create methods of a home
interface follow certain rules.

• The number and types of arguments in a create method must match those
of its corresponding ejbCreate method.

• The arguments and return type of the create method must be valid RMI
types.

• A create method returns the remote interface type of the enterprise bean.
(But an ejbCreate method returns void.)

• The throws clause of the create method must include the
java.rmi.RemoteException and the javax.ejb.CreateException.

Remote Interface
The remote interface is used when the bean is to be used in a distributed environ-
ment. The remote interface extends javax.ejb.EJBObject and identifies the
business interface whose methods may be invoked from a non-local virtual
machine. The remote interface extends the remote business interface, and the
bean class only implements the business interface.

Here is the source code for the CartRemote remote interface:

public interface CartRemote extends javax.ejb.EJBObject,
cart.CartRemoteBusiness{

}

The remote interface is empty because you do not need to define your methods
in the remote interface. The business methods are defined in the business inter-
face.

Business Interface
The business interface defines the business methods that a remote client can
invoke. Here is the source code for the CartRemoteBusiness business interface:

import java.util.*;
import java.exception.BookException;

public interface CartRemoteBusiness {

150 SESSION BEAN EXAMPLES
void addBook(java.lang.String title) throws
java.rmi.RemoteException;

void removeBook(java.lang.String title) throws
BookException, java.rmi.RemoteException;

Vector getContents() throws java.rmi.RemoteException;
}

The method definitions in a business interface must follow these rules:

• Each method in the business interface must match a method implemented
in the enterprise bean class.

• The signatures of the methods in the business interface must be identical
to the signatures of the corresponding methods in the enterprise bean class.

• The arguments and return values must be valid RMI types.

The throws clause must include the java.rmi.RemoteException.

In this example, the methods in the business interface require you to import
libraries. Press Alt-Shift-F to generate the necessary import statments.

Building and Deploying the Application
Now that you have finished creating the Cart EJB module, the next step is to
build and deploy the application. You then run the client application to start the
session bean. The source files for the example are available in the
<INSTALL>/j2eetutorial14/examples/ejb/cart directory.

1. In the Projects window, right-click the Cart node and select Build Project
from the contextual menu.

2. Look at the Output window to ensure the application was built success-
fully.

3. In the Projects window, right-click the Cart node and select Deploy Project
from the contextual menu.

The deployed application is visible in the Runtime window of the IDE. To see
the deployed application, expand the EJB Modules node in the Applications
node of the server instance. You can undeploy and disable the application in the
Runtime window.

THE CARTCLIENT APPLICATION 151
The CartClient Application
Now that you have created the session bean, you are ready to run the client appli-
cation. You can choose to either create the CartClient application or Opening the
CartClient Project (page 153) located in the
<INSTALL>/j2eetutorial14/examples/ejb/cart/ directory, in which case you
need to resolve the references to libraries on the project’s classpath.

Creating the CartClient Application
You can create the J2EE application named CartClient in the IDE.

1. Choose File→New Project (Ctrl-Shift-N) from the main menu.
2. Choose General from the Categories pane and Java Application in the

Projects pane and click Next.
3. Enter CartClient as the Project Name, specify a Location for the project

and click Finish to create the project.
4. Right-click the CartClient node and choose Properties from the contextual

menu.
5. In the Properties dialog box, choose Libraries in the Categories pane and

click Add JAR/Folder and add the j2ee.jar and appserv-rt.jar to the
project classpath. Now click Add Project and add the Cart EJB module to
the project classpath. Click OK to close the Properties dialog box.

6. Add the following code to the main method:

try{
Context ctx = new InitialContext();
Object objRef = ctx.lookup("ejb/CartBean");
CartRemoteHome home =

152 SESSION BEAN EXAMPLES
(CartRemoteHome)PortableRemoteObject.narrow(objRef,
CartRemoteHome.class);

CartRemote shoppingCart = home.create("Duke DeEarl", "123");

shoppingCart.addBook("The Martian Chronicles");
shoppingCart.addBook("2001 A Space Odyssey");
shoppingCart.addBook("The Left Hand of Darkness");

Vector bookList = new Vector();

bookList = shoppingCart.getContents();

Enumeration enumer = bookList.elements();

while (enumer.hasMoreElements()) {
String title = (String) enumer.nextElement();

System.out.println(title);
}

shoppingCart.removeBook("Alice in Wonderland");
shoppingCart.remove();

System.exit(0);

}catch(BookException ex){
System.err.println("Caught a BookException " +

ex.getMessage());
System.exit(0);

}catch(Exception ex){
System.err.println("Caught an unexpected exception: " +

ex.getMessage());
System.exit(1);

}

7. Press Alt-Shift-F to generate the following import statements:

import cart.CartRemote;
import cart.CartRemoteHome;
import exception.BookException;
import java.util.Enumeration;
import java.util.Vector;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

THE HELLOSERVICE WEB SERVICE EXAMPLE 153
Opening the CartClient Project
If you open the source code of the CartClient application, you are prompted to
resolve library references and add the Cart EJB module and the j2ee.jar and
appserv-rt.jar files to the project classpath.

1. Right-click the CartClient node in the Projects window and choose
Resolve Reference Problems. Select the “Cart” project could not be
found message and click Resolve. In the file chooser, select either the com-
pleted Cart project in <INSTALL>/j2eetutorial14/examples/ejb/cart/
or the project you created and click OK.

2. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

Running the CartClient Application
Right-click the CartClient node and select Run Project from the contextual
menu. Lines similar to the following are displayed in the Output window of the
IDE:

run:
... com.sun.corba.ee.spi.logging.LogWrapperBase doLog
INFO: "IOP00710299: (INTERNAL) Successfully created IIOP
listener on the specified host/port: all interfaces/<port>"
The Martian Chronicles
2001 A Space Odyssey
The Left Hand of Darkness
Caught a BookException Alice in Wonderland not in cart.
BUILD SUCCESSFUL (total time: 3 seconds)

The HelloService Web Service Example
This example demonstrates a simple web service that generates a response based
on information received from the client. HelloServiceBean is a stateless session
bean that implements a single method, sayHello. This method matches the say-
Hello method invoked by the clients. In this section, you will register the Hel-
loService web service with the server and then test the HelloServiceBean by
running the HelloWebClient JAX-RPC client.

154 SESSION BEAN EXAMPLES
The source code for the HelloService example is located in the
<INSTALL>/j2eetutorial/examples/ejb/helloservice/ directory.

Opening the HelloService Example
The HelloService project contains the HelloServiceBean class and the service
endpoint interface (SEI). The HelloServiceBean class is located in the hello
package in the Source Packages node and contains the business method. The
HelloServiceSEI interface is also located in the hello package.

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/, select the
HelloService directory, and choose Open Project.

2. Expand the hello package under the Source Packages node and open the
HelloServiceSEI interface in the Source Editor.

Web Service Endpoint Interface
HelloServiceSEI is the bean’s web service endpoint interface. It provides the
client’s view of the web service, hiding the stateless session bean from the client.
A web service endpoint interface must conform to the rules of a JAX-RPC ser-
vice definition interface. For a summary of these rules, see Generating and Cod-
ing the Service Endpoint Interface and Implementation Class (page 36). Here is
the source code for the HelloService interface:

package hello;

public interface HelloServiceSEI extends java.rmi.Remote {

 public String sayHello(java.lang.String name) throws
java.rmi.RemoteException;
}

Stateless Session Bean Implementation Class
The HelloServiceBean class implements the sayHello method defined by the
HelloServiceSEI interface. The interface decouples the implementation class
from the type of client access. For example, if you added remote and home inter-
faces to HelloServiceBean, the methods of the HelloServiceBean class could

STATELESS SESSION BEAN IMPLEMENTATION CLASS 155
also be accessed by remote clients. No changes to the HelloServiceBean class
would be necessary.

The source code for the HelloServiceBean class follows:

package hello;

import javax.ejb.*;

public class HelloServiceBean implements javax.ejb.SessionBean
{

private javax.ejb.SessionContext context;

 public String sayHello(java.lang.String name) {

return "Hello "+ name + " (from HelloServiceBean)";
}

public void ejbCreate() {}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(javax.ejb.SessionContext

aContext) {
context = aContext;

}
}

To run the HelloService example, you need to build and deploy the application.
You also need to register the web service with the application server before you
can run the HelloWebClient application to test the HelloService example.

1. In the Projects window, right-click the HelloService module node and
choose Run Project.

2. Expand the Web Services node and right-click the HelloService web ser-
vice and choose Add to Registry. In the Enter WSDL Url dialog box,
ensure that the address is correct and corresponds to your server configu-
ration and click OK.

After you register the web service, the web service is visible in the Runtime win-
dow under the Web Services node of the server instance and the HelloService
application is visible under the EJB Modules under the Applications node. After
you have deployed the application and registered the web service, you can test
the web service by running the HelloWebClient application.

156 SESSION BEAN EXAMPLES
Running the HelloWebClient Application
When you run the HelloWebClient application, the HelloWebClient application
is deployed to your server and the HelloWebServlet opens in your web browser.
This HelloWebClient example already contains the necessary reference to the
HelloService web service so you do not need to add it. For this example, it is
assumed that your localhost server is running on port 8080. If your server is run-
ning on a different port, you will need to edit the following line in the HelloSer-
vice.wsdl file to match your configuration. The HelloService.wsdl file is
located in the directory <INSTALL>/j2eetutorial14/exam-

ples/ejb/helloservice/HelloWebClient/web/WEB-INF/wsdl/.

<soap:address
location="http://localhost:8080/webservice/HelloService"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/, select the
HelloWebClient directory, and choose Open Project.

2. In the Projects window, right-click the HelloWebClient project node and
choose Run Project. The IDE builds the project, registers the server
resources and opens the client in your web browser.

3. When the servlet page opens in your web browser, enter your name in the
input box and click Submit to test the web service.

The web page displays the text you input followed by “(from HelloService-
Bean)”

Other Enterprise Bean Features
The topics that follow apply to session beans and entity beans.

Accessing Environment Entries
Stored in an enterprise bean’s deployment descriptor, an environment entry is a
name-value pair that allows you to customize the bean’s business logic without
changing its source code. An enterprise bean that calculates discounts, for exam-
ple, might have an environment entry named Discount Percent. Before deploy-
ing the bean’s application, you could run a development tool to assign Discount

ACCESSING ENVIRONMENT ENTRIES 157
Percent a value of 0.05 in the bean’s deployment descriptor. When you run the
application, the bean fetches the 0.05 value from its environment.

In the following code example, the applyDiscount method uses environment
entries to calculate a discount based on the purchase amount. First, the method
locates the environment naming context by invoking lookup using the
java:comp/env parameter. Then it calls lookup on the environment to get the
values for the Discount Level and Discount Percent names. For example, if
you assign a value of 0.05 to the Discount Percent entry, the code will assign
0.05 to the discountPercent variable. The applyDiscount method, which fol-
lows, is in the CheckerBean class. The source code for this example is in
<INSTALL>/j2eetutorial14/examples/ejb/checker.

public double applyDiscount(double amount) {

try {

double discount;

Context initial = new InitialContext();
Context environment =

(Context)initial.lookup("java:comp/env");

Double discountLevel =
(Double)environment.lookup("Discount Level");

Double discountPercent =
(Double)environment.lookup("Discount Percent");

if (amount >= discountLevel.doubleValue()) {
discount = discountPercent.doubleValue() / 100;

}
else {

discount = 0.00;
}

return amount * (1.00 - discount);

} catch (NamingException ex) {
throw new EJBException("NamingException: "+

ex.getMessage());
}

}

158 SESSION BEAN EXAMPLES
Comparing Enterprise Beans
A client can determine whether two stateful session beans are identical by invok-
ing the isIdentical method:

bookCart = home.create("Bill Shakespeare");
videoCart = home.create("Lefty Lee");
...
if (bookCart.isIdentical(bookCart)) {
 // true ... }
if (bookCart.isIdentical(videoCart)) {
 // false ... }

Because stateless session beans have the same object identity, the isIdentical
method always returns true when used to compare them.

To determine whether two entity beans are identical, the client can invoke the
isIdentical method, or it can fetch and compare the beans’s primary keys:

String key1 = (String)accta.getPrimaryKey();
String key2 = (String)acctb.getPrimaryKey();

if (key1.compareTo(key2) == 0)
 System.out.println("equal");

Passing an Enterprise Bean’s Object
Reference
Suppose that your enterprise bean needs to pass a reference to itself to another
bean. You might want to pass the reference, for example, so that the second bean
can call the first bean’s methods. You can’t pass the this reference because it
points to the bean’s instance, which is running in the EJB container. Only the
container can directly invoke methods on the bean’s instance. Clients access the
instance indirectly by invoking methods on the object whose type is the bean’s
remote interface. It is the reference to this object (the bean’s remote reference)
that the first bean would pass to the second bean.

A session bean obtains its remote reference by calling the getEJBObject method
of the SessionContext interface. An entity bean would call the getEJBObject
method of the EntityContext interface. These interfaces provide beans with
access to the instance contexts maintained by the EJB container. Typically, the

USING THE TIMER SERVICE 159
bean saves the context in the setSessionContext method. The following code
fragment shows how a session bean might use these methods.

public class WagonBean implements SessionBean {

 SessionContext context;
 ...
 public void setSessionContext(SessionContext aContext) {

context = aContext;
 }
 ...
 public void passItOn(Basket basket) {

...
 basket.copyItems(context.getEJBObject());
 }

Using the Timer Service
Applications that model business work flows often rely on timed notifications.
The timer service of the enterprise bean container enables you to schedule timed
notifications for all types of enterprise beans except for stateful session beans.
You can schedule a timed notification to occur at a specific time, after a duration
of time, or at timed intervals. For example, you could set timers to go off at
10:30 AM on May 23, in 30 days, or every 12 hours.

When a timer expires (goes off), the container calls the ejbTimeout method of
the bean’s implementation class. The ejbTimeout method contains the business
logic that handles the timed event. Because ejbTimeout is defined by the
javax.ejb.TimedObject interface, the bean class must implement TimedOb-
ject.

There are four interfaces in the javax.ejb package that are related to timers:

• TimedObject

• Timer

• TimerHandle

• TimerService

Creating Timers
To create a timer, the bean invokes one of the createTimer methods of the Tim-
erService interface. (For details on the method signatures, see the TimerSer-

160 SESSION BEAN EXAMPLES
vice API documentation.) When the bean invokes createTimer, the timer
service begins to count down the timer duration.

The bean described in the The TimerSessionBean Example (page 162) creates a
timer as follows:

TimerService timerService = context.getTimerService();
Timer timer = timerService.createTimer(intervalDuration,

"created timer");

In the TimerSessionBean example, createTimer is invoked in a business
method, which is called by a client. An entity bean can also create a timer in a
business method. If you want to create a timer for each instance of an entity
bean, you can code the createTimer call in the bean’s ejbCreate method.

Timers are persistent. If the server is shut down (or even crashes), timers are
saved and will become active again when the server is restarted. If a timer
expires while the server is down, the container will call ejbTimeout when the
server is restarted.

A timer for an entity bean is associated with the bean’s identity—that is, with a
particular instance of the bean. If an entity bean sets a timer in ejbCreate, for
example, each bean instance will have its own timer. In contrast, stateless ses-
sion and message-driven beans do not have unique timers for each instance.

The Date and long parameters of the createTimer methods represent time with
the resolution of milliseconds. However, because the timer service is not
intended for real-time applications, a callback to ejbTimeout might not occur
with millisecond precision. The timer service is for business applications, which
typically measure time in hours, days, or longer durations.

Canceling and Saving Timers
Timers can be canceled by the following events:

• When a single-event timer expires, the EJB container calls ejbTimeout
and then cancels the timer.

• When an entity bean instance is removed, the container cancels the timers
associated with the instance.

• When the bean invokes the cancel method of the Timer interface, the con-
tainer cancels the timer.

GETTING TIMER INFORMATION 161
If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and
store the TimerHandle object in a database. (A TimerHandle object is serializ-
able.) To reinstantiate the Timer object, retrieve the handle from the database
and invoke getTimer on the handle. A TimerHandle object cannot be passed as
an argument of a method defined in a remote or web service interface. In other
words, remote clients and web service clients cannot access a bean’s TimerHan-
dle object. Local clients, however, do not have this restriction.

Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface
defines methods for obtaining information about timers:

public long getTimeRemaining();
public java.util.Date getNextTimeout();
public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the cre-
ateTimer invocation. For example, in the createTimer code snippet of the pre-
ceding section, this information parameter is a String object with the value
created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the Tim-
erService interface. The getTimers method returns a collection of Timer
objects.

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction
is rolled back, the timer creation is also rolled back. Similarly, if a bean cancels a
timer within a transaction that gets rolled back, the timer cancellation is rolled
back. In this case, the timer’s duration is reset as if the cancellation had never
occurred.

In beans that use container-managed transactions, the ejbTimeout method usu-
ally has the RequiresNew transaction attribute to preserve transaction integrity.
With this attribute, the EJB container begins the new transaction before calling

162 SESSION BEAN EXAMPLES
ejbTimeout. If the transaction is rolled back, the container will try to call ejb-
Timeout at least one more time.

The TimerSessionBean Example
The source code for this example is in the <INSTALL>/j2eetutorial14/exam-
ples/ejb/timersession/ directory.

TimerSession is a stateless session bean that shows how to set a timer. The
implementation class for TimerSessionBean is called TimerSessionBean. In
the source code listing of TimerSessionBean that follows, note the myCre-
ateTimer and ejbTimeout methods. Because it’s a business method, myCre-
ateTimer is defined in the bean’s business interface
(TimerSessionRemoteBusiness). The remote interface (TimerSessionRemote)
defines the interfaces that can be called by the remote client. In this example, the
client invokes myCreateTimer with an interval duration of 30,000 milliseconds.
The myCreateTimer method fetches a TimerService object from the bean’s
SessionContext. Then it creates a new timer by invoking the createTimer
method of TimerService. Now that the timer is set, the EJB container will
invoke the ejbTimer method of TimerSessionBean when the timer expires—in
about 30 seconds. Here’s the source code for the TimerSessionBean class:

package timer;

import javax.ejb.*;

public class TimerSessionBean implements SessionBean,
TimerSessionRemoteBusiness, TimedObject {
 private SessionContext context;

 public void myCreateTimer(long intervalDuration) {

 System.out.println
 ("TimerSessionBean: start createTimer ");
 TimerService timerService =
 context.getTimerService();
 Timer timer =
 timerService.createTimer(intervalDuration,

"created timer");
}

 public void ejbTimeout(Timer timer) {
 System.out.println("TimerSessionBean: ejbTimeout ");
 }

THE TIMERSESSIONBEAN EXAMPLE 163
 public void setSessionContext(SessionContext aContext) {
 context = aContext;
 }

 public void ejbCreate() {
 System.out.println("TimerSessionBean: ejbCreate");
 }

 public TimerSessionBean() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

}

Running the TimerSessionBean Example
To run the TimerSessionBean example, you first need to open the TimerClient
and the TimerEJB projects in the IDE and build the projects.

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/timersession/, select the
TimerEJB directory, and choose Open Project.

2. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/timersession/, select the
TimerClient directory, and choose Open Project. Right-click the Timer-
Client node in the Projects window and choose Resolve Resource Refer-
ences and locate the j2ee.jar and appserv-rt.jar files to add to the
project classpath. The JAR files can be found in the lib folder of the local
installation of the SJS Application Server. You will also need to add the
TimerEJB module to the project classpath.

3. Right-click the TimerEJB node in the Projects window and choose Run
Project. The TimerEJB application is deployed to the server.

4. Right-click the TimerClient node in the Projects window and choose Run
Project.

Lines similar to the following will appear in the Output window:

4.5.2005 15:35:43 com.sun.corba.ee.spi.logging.LogWrapper-
Base doLog

INFO: "IOP00710299: (INTERNAL) Successfully created IIOP
listener on the specified host/port: all interfaces/2154"

Creating a timer with an interval duration of 30000 ms.

164 SESSION BEAN EXAMPLES
BUILD SUCCESSFUL (total time: 2 seconds)

The output from the timer appears in the server log file for the localhost in the
Output window.

After about 30 seconds you will see lines similar to the following:

[#|2005-05-04T15:38:06.320+0200|INFO|sun-appserver-
pe8.1_01|javax.enterprise.system.stream.out|_ThreadID=19;|

TimerSessionBean: start createTimer |#]

[#|2005-05-04T15:38:13.445+0200|INFO|sun-appserver-
pe8.1_01|javax.enterprise.system.stream.out|_ThreadID=19;|

TimerSessionBean: ejbTimeout |#]

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an applica-
tion. Examples of these problems include the following: a database connection
cannot be obtained, an SQL insert fails because the database is full, or a lookup
method cannot find the desired object. If your enterprise bean encounters a sys-
tem-level problem, it should throw a javax.ejb.EJBException. The container
will wrap the EJBException in a RemoteException, which it passes back to the
client. Because the EJBException is a subclass of the RuntimeException, you
do not have to specify it in the throws clause of the method declaration. If a sys-
tem exception is thrown, the EJB container might destroy the bean instance.
Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise
bean. There are two types of application exceptions: customized and predefined.
A customized exception is one that you’ve coded yourself, such as the Insuffi-
centBalanceException thrown by the debit business method of the Sav-
ingsAccountBean example. The javax.ejb package includes several
predefined exceptions that are designed to handle common problems. For exam-
ple, an ejbCreate method should throw a CreateException to indicate an
invalid input parameter. When an enterprise bean throws an application excep-

HANDLING EXCEPTIONS 165
tion, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back
the transaction. However, if an application exception is thrown within a transac-
tion, the container does not roll back the transaction.

Table 6–1 summarizes the exceptions of the javax.ejb package. All of these
exceptions are application exceptions, except for the NoSuchEntityException
and the EJBException, which are system exceptions.

Table 6–1 Exceptions

Method Name Exception It Throws Reason for Throwing

ejbCreate CreateException
An input parameter is
invalid.

ejbFindByPrima-
ryKey
(and other finder methods
that return a single object)

ObjectNotFoundException
(subclass of FinderException)

The database row for the
requested entity bean
cannot be found.

ejbRemove RemoveException
The entity bean’s row
cannot be deleted from
the database.

ejbLoad NoSuchEntityException
The database row to be
loaded into the entity
bean cannot be found.

ejbStore NoSuchEntityException
The database row to be
updated cannot be found.

(all methods) EJBException
A system problem has
been encountered.

166 SESSION BEAN EXAMPLES

7

167
Bean-Managed
Persistence Examples

DATA is at the heart of most business applications. In J2EE applications,
entity beans represent the business objects that are stored in a database. For
entity beans with bean-managed persistence, you must write the code for the
database access calls. Although writing this code is an additional responsibility,
you will have more control over how the entity bean accesses a database.

This chapter discusses the coding techniques for entity beans with bean-man-
aged persistence. For conceptual information on entity beans, please see What Is
an Entity Bean? (page 111).

The SavingsAccountBean Example
The entity bean illustrated in this section represents a simple bank account. The
state of the SavingsAccountBean enterprise bean is stored in the savingsac-

168 BEAN-MANAGED PERSISTENCE EXAMPLES
count table of a relational database. The savingsaccount table is created by the
following SQL statement:

CREATE TABLE savingsaccount
(id VARCHAR(3)
CONSTRAINT pk_savingsaccount PRIMARY KEY,
firstname VARCHAR(24),
lastname VARCHAR(24),
balance NUMERIC(10,2));

The SavingsAccountBean example requires the following code:

• Entity bean class (SavingsAccountBean)
• Home interface (SavingsAccountLocalHome)
• Remote interface (SavingsAccountLocal)

In addition to these standard files, the IDE also creates a business interface
(PlayerLocalBusiness) in which it registers business methods. This example
also uses the following classes:

• A utility class named InsufficientBalanceException
• A client class called SavingsAccountClient

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/ejb/savingsaccount/

Creating the SavingsAccount Project
In the IDE, we have to create a project for the EJB module. We will create a
stand-alone EJB module project.

Creating the SavingsAccount Project
1. Choose File→New Project (Ctrl-Shift-N).
2. From the Enterprise template category, select EJB Module and click Next.
3. Type SavingsAccount as the Project Name, specify a location for the

project, and click Finish.

ENTITY BEAN CLASS 169
Creating the SavingsAccount Enterprise Bean
1. In the Projects window, right-click the SavingsAccount project node and

choose New→Entity Bean.
2. In the EJB Name field, type SavingsAccount. In the Package field, type

bank. Set the bean’s persistence to Bean and set the bean to only contain
remote interfaces. Then click Finish.

Entity Bean Class
The sample entity bean class, SavingsAccountBean, is opened in the Source
Editor when you create the entity bean. Most of the EJB infrastructure mehtods
are hidden in a code fold. Click the + sign at the left of the code fold to inspect
these methods.

As you look through the bean class, note that it meets the requirements of any
entity bean that uses bean-managed persistence. First, it implements the follow-
ing:

• EntityBean interface
• Zero or more ejbCreate and ejbPostCreate methods
• Finder methods
• Business methods
• Home methods

In addition, an entity bean class with bean-managed persistence has these
requirements:

• The class is defined as public.
• The class cannot be defined as abstract or final.
• It contains an empty constructor.
• It does not implement the finalize method.

The EntityBean Interface
The EntityBean interface extends the EnterpriseBean interface, which extends
the Serializable interface. The EntityBean interface declares a number of
methods, such as ejbActivate and ejbLoad, which you must implement in your
entity bean class. These methods are discussed in later sections.

http://java.sun.com/j2ee/tutorial/api/javax/ejb/EntityBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

170 BEAN-MANAGED PERSISTENCE EXAMPLES
The Database Lookup
Before you can access the database, you must connect to it. When you generate
database lookup code in the IDE, a data source and connection pool area auto-
matically added to the project. These resources are configred on the server when
you deploy the project.

1. In the Source Editor, right-click anywhere in the body of the SavingsAc-
countBean class and choose Enterprise Resources→Use Database.

2. Change the JNDI Name to pointbase, select jdbc:pointbase://local-
host:9092/sun-appserv-samples in the Connection combo box, and
click OK.

3. If prompted for a password, type pbpublic in the Password field and click
OK.

The IDE inserts the following code in the SavingsAccountBean class:

private DataSource getPointbase() throws NamingException {
Context c = new InitialContext();
return (DataSource)

c.lookup("java:comp/env/jdbc/pointbase");
}

Now use the DataSource object store a connection to the database in a Connec-
tion object.

1. In the Source Editor, select the SavingsAccountBean class and add the fol-
lowing field to your list of field declarations:
private Connection con;

2. Add a method that makes a connection to the database:
private void makeConnection() {

try {
con = getPointbase().getConnection();

} catch (Exception ex) {
throw new EJBException("Unable to connect to database.

" +
ex.getMessage());

}
}

3. Add a method that releases the database connection:

private void releaseConnection() {
try {

con.close();

ENTITY BEAN CLASS 171
} catch (SQLException ex) {
throw new EJBException("releaseConnection: " + ex.get-

Message());
}

}

4. Press Alt-Shift-F to generate the following import statements:
import java.sql.Connection;
import java.sql.SQLException;

Database Access Methods
Now that you have a connection to the database, you need to code the methods
that implement the calls to the database.

1. Add the following field declarations to SavingsAccountBean:
private String id;

private String firstName;

private String lastName;

private BigDecimal balance;

2. Generate get and set methods for each of the fields. In the Source Editor,
right-click anywhere in SavingsAccountBean and choose Refactor→En-
capulate Fields. In the dialog box, select the checkbox for the four fields
and click Next. Then click Do Refactoring to generate the methods.

3. Add each of the get methods to the remote interface so that they are avail-
able to the clients. In the Source Editor, right-click each method’s name
(for example, getFirstName) and choose EJB Methods→Add to Remote
Interface.

4. Add the database methods to the entity bean class. You can copy the busi-
ness methods from the SavingsAccountBean class in the
<INSTALL>/j2eetutorial14/examples/ejb/savingsac-
count/SavingsAccount/src/java directory. The business methods start
with the // Database Methods comment on line 251 and end with the
selectInRange method on line 535.

5. Press Alt-Shift-F to generate the following import statements:
import java.math.BigDecimal;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.ArrayList;
import java.util.Collection;

172 BEAN-MANAGED PERSISTENCE EXAMPLES
The ejbCreate Method
When the client invokes a create method, the EJB container invokes the corre-
sponding ejbCreate method. Typically, an ejbCreate method in an entity bean
performs the following tasks:

• Inserts the entity state into the database
• Initializes the instance variables
• Returns the primary key

In the IDE, you can generate ejbCreate methods into the bean class and the
home interface at the same time.

1. In the Source Editor, right-click anywhere in the body of the SavingsAc-
countBean class and choose EJB Methods→Add Create Method.

2. Use the Add button on the Parameters tab of the dialog box to add the fol-
lowing parameters:
• String id

• String firstName

• String lastName

• BigDecimal balance

3. Leave the default information in the Exceptions tab and click OK.

The IDE inserts an empty ejbCreate method and an empty ejbPostCreate
method into the SavingsAccountBean class.

The ejbCreate method of SavingsAccountBean inserts the entity state into the
database by invoking the private insertRow method, which issues the SQL
INSERT statement. Change the contents of the ejbCreate method to the follow-
ing:

public String ejbCreate(String id, String firstName,
 String lastName, BigDecimal balance)
 throws CreateException {

 if (balance.signum() == -1) {
 throw new CreateException
 ("A negative initial balance is not allowed.");
 }

 try {
 insertRow(id, firstName, lastName, balance);
 } catch (Exception ex) {
 throw new EJBException("ejbCreate: " +

ENTITY BEAN CLASS 173
 ex.getMessage());
 }

 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.balance = balance;

 return id;
}

Although the SavingsAccountBean class has only one ejbCreate method, An
enterprise bean can contain multiple ejbCreate methods. For an example, see
the CartBean.java source code in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cart/

When you write an ejbCreate method for an entity bean, be sure to follow these
rules:

• The access control modifier must be public.
• The return type must be the primary key.
• The arguments must be legal types for the Java RMI API.
• The method modifier cannot be final or static.

The throws clause can include the javax.ejb.CreateException and excep-
tions that are specific to your application. An ejbCreate method usually throws
a CreateException if an input parameter is invalid. If an ejbCreate method
cannot create an entity because another entity with the same primary key already
exists, it should throw a javax.ejb.DuplicateKeyException (a subclass of
CreateException). If a client receives a CreateException or a Dupli-
cateKeyException, it should assume that the entity was not created.

The state of an entity bean can be directly inserted into the database by an appli-
cation that is unknown to the Sun Java System Application Server Platform Edi-
tion 8. For example, an SQL script might insert a row into the savingsaccount
table. Although the entity bean for this row was not created by an ejbCreate
method, the bean can be located by a client program.

174 BEAN-MANAGED PERSISTENCE EXAMPLES
The ejbPostCreate Method
For each ejbCreate method, your entity bean class must contain an ejbPost-
Create method. The IDE automatically creates an ejbPostCreate method
whenever you generate a create method.

The EJB container invokes ejbPostCreate immediately after it calls ejbCre-
ate. Unlike the ejbCreate method, the ejbPostCreate method can invoke the
getPrimaryKey and getEJBObject methods of the EntityContext interface.
For more information on the getEJBObject method, see the section Passing an
Enterprise Bean’s Object Reference (page 160). Often, your ejbPostCreate
methods will be empty. Leave the ejbPostCreate method empty in the Sav-
ingsAccountBean class.

The signature of an ejbPostCreate method must meet the following require-
ments:

• The number and types of arguments must match a corresponding ejbCre-
ate method.

• The access control modifier must be public.
• The method modifier cannot be final or static.
• The return type must be void.

The throws clause can include the javax.ejb.CreateException and excep-
tions that are specific to your application.

The ejbRemove Method
A client deletes an entity bean by invoking the remove method. This invocation
causes the EJB container to call the ejbRemove method, which deletes the entity
state from the database. In the SavingsAccountBean class, expand the code fold
that contains the EJB infrastructure methods and change the ejbRemove method
to the following:

public void ejbRemove() {
try {

deleteRow(id);
} catch (Exception ex) {

throw new EJBException("ejbRemove: " +ex.getMessage());
}

}

ENTITY BEAN CLASS 175
The ejbRemove method invokes a private method named deleteRow, which
issues an SQL DELETE statement.

If the ejbRemove method encounters a system problem, it should throw the
javax.ejb.EJBException. If it encounters an application error, it should throw
a javax.ejb.RemoveException.

An entity bean can also be removed directly by a database deletion. For example,
if an SQL script deletes a row that contains an entity bean state, then that entity
bean is removed.

The ejbLoad and ejbStore Methods
If the EJB container needs to synchronize the instance variables of an entity bean
with the corresponding values stored in a database, it invokes the ejbLoad and
ejbStore methods. The ejbLoad method refreshes the instance variables from
the database, and the ejbStore method writes the variables to the database. The
client cannot call ejbLoad and ejbStore.

If a business method is associated with a transaction, the container invokes ejb-
Load before the business method executes. Immediately after the business
method executes, the container calls ejbStore. Because the container invokes
ejbLoad and ejbStore, you do not have to refresh and store the instance vari-
ables in your business methods. The SavingsAccountBean class relies on the
container to synchronize the instance variables with the database. Therefore, the
business methods of SavingsAccountBean should be associated with transac-
tions.

If the ejbLoad and ejbStore methods cannot locate an entity in the underlying
database, they should throw the javax.ejb.NoSuchEntityException. This
exception is a subclass of EJBException. Because EJBException is a subclass
of RuntimeException, you do not have to include it in the throws clause. When
NoSuchEntityException is thrown, the EJB container wraps it in a RemoteEx-
ception before returning it to the client.

In the Source Editor, change the ejbLoad and ejbStore methods to the follow-
ing:

public void ejbLoad() {
try {

loadRow();
} catch (Exception ex) {

throw new EJBException("ejbLoad: " + ex.getMessage());
}

176 BEAN-MANAGED PERSISTENCE EXAMPLES
}

public void ejbStore() {
try {

storeRow();
} catch (Exception ex) {

throw new EJBException("ejbStore: " + ex.getMessage());
}

}

In the SavingsAccountBean class, ejbLoad invokes the loadRow method, which
issues an SQL SELECT statement and assigns the retrieved data to the instance
variables. The ejbStore method calls the storeRow method, which stores the
instance variables in the database using an SQL UPDATE statement.

The Finder Methods
The finder methods allow clients to locate entity beans. The SavingsAccount-
Client program locates entity beans using three finder methods:

SavingsAccountRemote jones = home.findByPrimaryKey("836");
...
Collection c = home.findByLastName("Smith");
...
Collection c = home.findInRange(new BigDecimal("20.00"),

new BigDecimal("99.00"));

For every finder method available to a client, the entity bean class must imple-
ment a corresponding method that begins with the prefix ejbFind. The Sav-
ingsAccountBean class, for example, implements two optional finder methods:
ejbFindByLastName and ejbFindInRange.

1. In the Source Editor, right-click anywhere in the body of the SavingsAc-
countBean class and choose EJB Methods→Add Finder Method.

2. In the Name field, type findByLastName. Leave the Return Cardinality set
to Many and the Remote interface selected. Use the Parameters tab to add
a String lastName parameter. Then click OK to generate the finder
method in both the bean class and the home interface.

3. Edit the ejbFindByLastName method as follows:
public Collection ejbFindByLastName(String lastName)

throws FinderException {
Collection result;
try {

ENTITY BEAN CLASS 177
result = selectByLastName(lastName);
} catch (Exception ex) {

throw new EJBException("ejbFindByLastName " +
ex.getMessage());

}
return result;

}

4. Repeat steps 1-3 to create the following ejbFindInRange method:

public Collection ejbFindInRange(BigDecimal low,
BigDecimal high) throws FinderException {

Collection result;
try {

result = selectInRange(low, high);
} catch (Exception ex) {

throw new EJBException("ejbFindInRange: "
+ ex.getMessage());

}
return result;

}

The finder methods that are specific to your application, such as ejbFindBy-
LastName and ejbFindInRange, are optional, but the ejbFindByPrimaryKey
method is required. As its name implies, the ejbFindByPrimaryKey method
accepts as an argument the primary key, which it uses to locate an entity bean. In
the SavingsAccountBean class, the primary key is the id variable. Edit the
ejbFindByPrimaryKey method as follows:

public String ejbFindByPrimaryKey(String aKey)
throws FinderException {

boolean result;

try {
result = selectByPrimaryKey(aKey);

} catch (Exception ex) {
throw new EJBException("ejbFindByPrimaryKey: " +

ex.getMessage());
}

if (result) {
return aKey;

}
else {

throw new ObjectNotFoundException
("Row for id " + aKey + " not found.");

}
}

178 BEAN-MANAGED PERSISTENCE EXAMPLES
The ejbFindByPrimaryKey method may look strange to you, because it uses a
primary key for both the method argument and the return value. However,
remember that the client does not call ejbFindByPrimaryKey directly. It is the
EJB container that calls the ejbFindByPrimaryKey method. The client invokes
the findByPrimaryKey method, which is defined in the home interface.

The following list summarizes the rules for the finder methods that you imple-
ment in an entity bean class with bean-managed persistence:

• The ejbFindByPrimaryKey method must be implemented.
• A finder method name must start with the prefix ejbFind.
• The access control modifier must be public.
• The method modifier cannot be final or static.
• The arguments and return type must be legal types for the Java RMI API.

(This requirement applies only to methods defined in a remote—and not a
local—home interface.)

• The return type must be the primary key or a collection of primary keys.

The throws clause can include the javax.ejb.FinderException and excep-
tions that are specific to your application. If a finder method returns a single pri-
mary key and the requested entity does not exist, the method should throw the
javax.ejb.ObjectNotFoundException (a subclass of FinderException). If a
finder method returns a collection of primary keys and it does not find any
objects, it should return an empty collection.

The Business Methods
The business methods contain the business logic that you want to encapsulate
within the entity bean. Usually, the business methods do not access the database,
and this allows you to separate the business logic from the database access code.

First you need to create a special Java exception class that your business meth-
ods will use.

1. In the Projects window, right-click the SavingsAccount project node and
choose New→File/Folder.

2. From the Java Classes category, select the Java Exception template and
click Next.

3. Name the class InsufficientBalanceException, place it in the bank
package, and choose Finish. The IDE creates the class and opens it in the

ENTITY BEAN CLASS 179
Source Editor. You could customize the way the exception is handled. For
our purposes, we will just use the basic code provided by the template.

Now you can add the business methods.

1. In the Source Editor, right-click anywhere in the body of the SavingsAc-
countBean class and choose EJB Methods→Add Business Method.

2. In the Name field, type debit. Leave void in the Return Type combo box.
In the Parameters tab, use the Add button to add a BigDecimal amount
parameter. In the Exceptions tab, use the Add button to add an
InsufficientBalanceException exception. Then click OK to generate
the method.

3. Edit the body of the the debit method as follows:
public void debit(BigDecimal amount)

throws InsufficientBalanceException {
if (balance.compareTo(amount) == -1) {

throw new InsufficientBalanceException();
}
balance = balance.subtract(amount);

}

4. Repeat steps 1-3 to create the following business method. Make sure you
set the return types, exceptions, and parameters correctly:

public void credit(BigDecimal amount) {
 balance = balance.add(amount);
}

The SavingsAccountClient program invokes the business methods as follows:

BigDecimal zeroAmount = new BigDecimal("0.00");
SavingsAccount duke = home.create("123", "Duke", "Earl",
 zeroAmount);
...
duke.credit(new BigDecimal("88.50"));
duke.debit(new BigDecimal("20.25"));
BigDecimal balance = duke.getBalance();

The requirements for the signature of a business method are the same for session
beans and entity beans:

• The method name must not conflict with a method name defined by the
EJB architecture. For example, you cannot call a business method ejbCre-
ate or ejbActivate.

• The access control modifier must be public.
• The method modifier cannot be final or static.

180 BEAN-MANAGED PERSISTENCE EXAMPLES
• The arguments and return types must be legal types for the Java RMI API.
This requirement applies only to methods defined in a remote—and not a
local—home interface.

The throws clause can include the exceptions that you define for your applica-
tion. The debit method, for example, throws the InsufficientBalanceExcep-
tion. To indicate a system-level problem, a business method should throw the
javax.ejb.EJBException.

The Home Methods
A home method contains the business logic that applies to all entity beans of a
particular class. In contrast, the logic in a business method applies to a single
entity bean, an instance with a unique identity. During a home method invoca-
tion, the instance has neither a unique identity nor a state that represents a busi-
ness object. Consequently, a home method must not access the bean’s
persistence state (instance variables). (For container-managed persistence, a
home method also must not access relationships.)

Typically, a home method locates a collection of bean instances and invokes
business methods as it iterates through the collection. This approach is taken by
the ejbHomeChargeForLowBalance method of the SavingsAccountBean class.
The ejbHomeChargeForLowBalance method applies a service charge to all sav-
ings accounts that have balances less than a specified amount. The method
locates these accounts by invoking the findInRange method. As it iterates
through the collection of SavingsAccount instances, the ejbHomeChargeFor-
LowBalance method checks the balance and invokes the debit business method.

1. In the Source Editor, right-click anywhere in the body of the SavingsAc-
countBean class and choose EJB Methods→Add Home Method.

2. In the Name field, type chargeForLowBalance. Leave void in the Return
Type combo box. In the Parameters tab, use the Add button to add the fol-
lowing parameters:
• BigDecimal minimumBalance

• BigDecimal charge

3. In the Exceptions tab, use the Add button to add an
InsufficientBalanceException exception. Then click OK to generate
the method.

4. Edit the body of the the method as follows:
public void ejbHomeChargeForLowBalance(

BigDecimal minimumBalance, BigDecimal charge)

ENTITY BEAN CLASS 181
throws InsufficientBalanceException {

try {

SavingsAccountRemoteHome home =

(SavingsAccountRemoteHome)context.getEJBHome();

Collection c = home.findInRange(new BigDecimal("0.00"),

minimumBalance.subtract(new BigDecimal("0.01")));

 Iterator i = c.iterator();

 while (i.hasNext()) {

 SavingsAccountRemote account =

(SavingsAccountRemote)i.next();

 if (account.getBalance().compareTo(charge) == 1) {

 account.debit(charge);

 }

 }

 } catch (Exception ex) {

 throw new EJBException("ejbHomeChargeForLowBalance: "

+ ex.getMessage());

 }

}

The home interface defines a corresponding method named chargeForLowBal-
ance (see Home Method Definitions, page 183). Because the interface provides
the client view, the SavingsAccountClient program invokes the home method
as follows:

SavingsAccountRemoteHome home;
...
home.chargeForLowBalance(new BigDecimal("10.00"),

new BigDecimal("1.00"));

In the entity bean class, the implementation of a home method must adhere to
these rules:

• A home method name must start with the prefix ejbHome.
• The access control modifier must be public.
• The method modifier cannot be static.

The throws clause can include exceptions that are specific to your application; it
must not throw the java.rmi.RemoteException.

182 BEAN-MANAGED PERSISTENCE EXAMPLES
Home Interface
The home interface defines the create, finder, and home methods. The Sav-
ingsAccountRemoteHome interface follows:

import java.util.Collection;
import java.math.BigDecimal;
import java.rmi.RemoteException;
import javax.ejb.*;

public interface SavingsAccountRemoteHome extends EJBHome {

SavingsAccountRemote create(String id, String firstName,
String lastName, BigDecimal balance)
throws RemoteException, CreateException;

SavingsAccountRemote findByPrimaryKey(String key)

throws FinderException, RemoteException;

Collection findByLastName(String lastName)
throws FinderException, RemoteException;

Collection findInRange(BigDecimal low, BigDecimal high)
throws FinderException, RemoteException;

void chargeForLowBalance(BigDecimal minimumBalance,
BigDecimal charge)throws InsufficientBalanceException,
RemoteException;

}

Note: Since you used simple names of classes to generate the home methods and
finder methods, you have to open the home interface and press Alt-Shift-F to gen-
erate the necessary import statements.

HOME INTERFACE 183
create Method Definitions
Each create method in the home interface must conform to the following
requirements:

• It must have the same number and types of arguments as its matching ejb-
Create method in the enterprise bean class.

• It must return the remote interface type of the enterprise bean.
• The throws clause must include the exceptions specified by the throws

clause of the corresponding ejbCreate and ejbPostCreate methods.
• The throws clause must include the javax.ejb.CreateException.
• If the method is defined in a remote—and not a local—home interface,

then the throws clause must include the java.rmi.RemoteException.

Finder Method Definitions
Every finder method in the home interface corresponds to a finder method in the
entity bean class. The name of a finder method in the home interface begins with
find, whereas the corresponding name in the entity bean class begins with
ejbFind. For example, the SavingsAccountRemoteHome class defines the
findByLastName method, and the SavingsAccountBean class implements the
ejbFindByLastName method. The rules for defining the signatures of the finder
methods of a home interface follow.

• The number and types of arguments must match those of the corresponding
method in the entity bean class.

• The return type must be the entity bean’s remote interface type or a collec-
tion of those types.

• The exceptions in the throws clause must include those of the correspond-
ing method in the entity bean class.

• The throws clause must contain the javax.ejb.FinderException.

• If the method is defined in a remote—and not a local—home interface,
then the throws clause must include the java.rmi.RemoteException.

Home Method Definitions
Each home method definition in the home interface corresponds to a method in
the entity bean class. In the home interface, the method name is arbitrary, pro-
vided that it does not begin with create or find. In the bean class, the matching

184 BEAN-MANAGED PERSISTENCE EXAMPLES
method name begins with ejbHome. For example, in the SavingsAccountBean
class the name is ejbHomeChargeForLowBalance, but in the SavingsAccoun-
tRemoteHome interface the name is chargeForLowBalance.

The home method signature must follow the same rules specified for finder
methods in the preceding section (except that a home method does not throw a
FinderException).

Remote Interface
The remote interface usually extends javax.ejb.EJBObject and defines the
business methods that a remote client can invoke. Because the IDE enforces best
design pratcices, it registers all of an entity bean’s business methods in a busi-
ness interface. The remote interface then extends the remote business interface,
and the bean class only implements the business interface.

The remote interface is therefore empty:

package bank;
public interface SavingsAccountRemote extends

javax.ejb.EJBObject,bank.SavingsAccountRemoteBusiness {

}

Here is the SavingsAccountRemoteBusiness interface:

import java.rmi.RemoteException;
import java.math.BigDecimal;

public interface SavingsAccountRemote extends EJBObject {

void debit(BigDecimal amount)
throws InsufficientBalanceException, RemoteException;

void credit(BigDecimal amount)
throws RemoteException;

String getId()

throws RemoteException;

String getFirstName()
throws RemoteException;

String getLastName()
throws RemoteException;

RUNNING THE SAVINGSACCOUNT EXAMPLE 185
BigDecimal getBalance()
throws RemoteException;

}

Note: Since you used simple names of classes to generate the business methods,
you have to open the business interface and press Alt-Shift-F to generate the neces-
sary import statements.

The requirements for the method definitions in a remote interface are the same
for session beans and entity beans:

• Each method in the remote interface must match a method in the enterprise
bean class.

• The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

• The arguments and return values must be valid RMI types.
• The throws clause must include java.rmi.RemoteException.

A local interface has the same requirements, with the following exceptions:

• The arguments and return values are not required to be valid RMI types.
• The throws clause does not include java.rmi.RemoteException.

Running the SavingsAccount Example
Before you run this example, you have to create the database and deploy the
SavingsAccount.jar file.

Creating the Sample Database
The instructions that follow explain how to use the SavingsAccountBean exam-
ple with PointBase, the database software that is included in the Application
Server bundle.

1. In the IDE, choose Tools→PointBase Database→Start Local PointBase
Database.

186 BEAN-MANAGED PERSISTENCE EXAMPLES
2. Create the database tables by running the create.sql script.
a. Make sure that the appsrv.root property in your

<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. In the Runtime window, expand the Databases node, right-click the
jdbc:pointbase:server://localhost:9092/sun-appserv-samples

node, and choose Connect. Type pbpublic as the password and click OK.
Once the connection is established, expand the connection node’s Tables
node. There should be a node for the SAVINGSACCOUNT table.

Deploying the Application
1. In the Projects window, right-click the SavingsAccount project node and

choose Deploy Project. The IDE does the following
• Builds the EJB module
• Starts the application server if it is not already started
• Configures the data source and connection pool on the application

server
• Deploys the EJB module to the application server

2. In the Runtime window, expand Servers→Sun Java System Application
Server→Applications→EJB Modules and verify that the SavingsAccount
EJB module exists on the server.

Running the Client
The source code for the SavingsAccountClient project is in the
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount directory. When
you open the project, you have to resolve the references to libraries on the
project’s classpath.

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount/, select
the SavingsAccountClient directory, and choose Open Project.

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 187
2. The project needs to know the location of some JAR files on its classpath
and the SavingsAccount project. Right-click the SavingsAccountClient
project and choose Resolve Reference Problems. Select the “SavingsAc-
count” project could not be found message and click Resolve. In
the file chooser, select either the completed SavingsAccount project in
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount/ or the
project you created and click OK.

3. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

4. Right-click the SavingsAccountClient project and choose Run Project.
The client should display the following lines:
balance = 68.25
balance = 32.55
456: 44.77
730: 19.54
268: 100.07
836: 32.55
456: 44.77
4
7

To modify this example, see the instructions in Modifying the J2EE
Application (page 139).

Mapping Table Relationships for Bean-
Managed Persistence

In a relational database, tables can be related by common columns. The relation-
ships between the tables affect the design of their corresponding entity beans.
The entity beans discussed in this section are backed up by tables with the fol-
lowing types of relationships:

• One-to-one
• One-to-many
• Many-to-many

188 BEAN-MANAGED PERSISTENCE EXAMPLES
One-to-One Relationships
In a one-to-one relationship, each row in a table is related to a single row in
another table. For example, in a warehouse application, a storagebin table
might have a one-to-one relationship with a widget table. This application
would model a physical warehouse in which each storage bin contains one type
of widget and each widget resides in one storage bin.

Figure 7–1 illustrates the storagebin and widget tables. Because the storage-
binid uniquely identifies a row in the storagebin table, it is that table’s primary
key. The widgetid is the primary key of the widget table. The two tables are
related because the widgetid is also a column in the storagebin table. By refer-
ring to the primary key of the widget table, the widgetid in the storagebin
table identifies which widget resides in a particular storage bin in the warehouse.
Because the widgetid of the storagebin table refers to the primary key of
another table, it is called a foreign key. (The figures in this chapter denote a pri-
mary key with PK and a foreign key with FK.)

Figure 7–1 One-to-One Table Relationship

A dependent (child) table includes a foreign key that matches the primary key of
the referenced (parent) table. The values of the foreign keys in the storagebin
(child) table depend on the primary keys in the widget (parent) table. For exam-
ple, if the storagebin table has a row with a widgetid of 344, then the widget
table should also have a row whose widgetid is 344.

When designing a database application, you can choose to enforce the depen-
dency between the parent and child tables. There are two ways to enforce such a
dependency: by defining a referential constraint in the database or by performing

ONE-TO-ONE RELATIONSHIPS 189
checks in the application code. The storagebin table has a referential constraint
named fk_widgetid:

CREATE TABLE storagebin
 (storagebinid VARCHAR(3)
 CONSTRAINT pk_storagebin PRIMARY KEY,
 widgetid VARCHAR(3),
 quantity INTEGER,
 CONSTRAINT fk_widgetid
 FOREIGN KEY (widgetid)
 REFERENCES widget(widgetid));

The source code for the following example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/storagebin/

To open the project, choose File→Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial14/examples/ejb/storagebin/, select the Storage-
Bin directory, and choose Open Project.

The StorageBinBean and WidgetBean classes illustrate the one-to-one relation-
ship of the storagebin and widget tables. The StorageBinBean class contains
variables for each column in the storagebin table, including the foreign key,
widgetId:

private String storageBinId;
private String widgetId;
private int quantity;

The ejbFindByWidgetId method of the StorageBinBean class returns the
storageBinId that matches a given widgetId:

public String ejbFindByWidgetId(String widgetId)
 throws FinderException {

 String storageBinId;

 try {
 storageBinId = selectByWidgetId(widgetId);
 } catch (Exception ex) {
 throw new EJBException("ejbFindByWidgetId: " +
 ex.getMessage());
 }

 if (storageBinId == null) {
 throw new ObjectNotFoundException

190 BEAN-MANAGED PERSISTENCE EXAMPLES
 ("Row for widgetId " + widgetId + " not found.");
 }
 else {
 return storageBinId;
 }
}

The ejbFindByWidgetId method locates the widgetId by querying the database
in the selectByWidgetId method:

private String selectByWidgetId(String widgetId)
 throws SQLException {

 String storageBinId;

 makeConnection();
 String selectStatement =
 "select storagebinid " +
 "from storagebin where widgetid = ? ";
 PreparedStatement prepStmt =
 con.prepareStatement(selectStatement);
 prepStmt.setString(1, widgetId);

 ResultSet rs = prepStmt.executeQuery();

 if (rs.next()) {
 storageBinId = rs.getString(1);
 }
 else {
 storageBinId = null;
 }

 prepStmt.close();
 releaseConnection();
 return storageBinId;
}

To find out in which storage bin a widget resides, the StorageBinClient pro-
gram calls the findByWidgetId method:

String widgetId = "777";
StorageBin storageBin =
 storageBinHome.findByWidgetId(widgetId);
String storageBinId = (String)storageBin.getPrimaryKey();
int quantity = storageBin.getQuantity();

ONE-TO-ONE RELATIONSHIPS 191
Running the StorageBinBean Example
1. In the IDE, choose Tools→PointBase Database→Start Local PointBase

Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/storagebin/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/storagebin/, select the
StorageBinClient directory, and choose Open Project.

4. The project needs to know the location of some JAR files on its classpath
and the StorageBin project. Right-click the StorageBinClient project and
choose Resolve Reference Problems. Select the “StorageBin” project
could not be found message and click Resolve. In the file chooser,
select either the completed StorageBin project in
<INSTALL>/j2eetutorial14/examples/ejb/storagebin/ or the project
you created and click OK.

5. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

6. Right-click the StorageBin project and choose Deploy Project. The IDE
builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

7. Right-click the StorageBinClient project and choose Run Project. The cli-
ent should display the following:

...
777 388 500 1.0 Duct Tape
...

192 BEAN-MANAGED PERSISTENCE EXAMPLES
One-to-Many Relationships
If the primary key in a parent table matches multiple foreign keys in a child
table, then the relationship is one-to-many. This relationship is common in data-
base applications. For example, an application for a sports league might access a
team table and a player table. Each team has multiple players, and each player
belongs to a single team. Every row in the child table (player) has a foreign key
identifying the player’s team. This foreign key matches the team table’s primary
key.

The sections that follow describe how you might implement one-to-many rela-
tionships in entity beans. When designing such entity beans, you must decide
whether both tables are represented by entity beans, or only one.

A Helper Class for the Child Table
Not every database table needs to be mapped to an entity bean. If a database
table doesn’t represent a business entity, or if it stores information that is con-
tained in another entity, then you should use a helper class to represent the table.
In an online shopping application, for example, each order submitted by a cus-
tomer can have multiple line items. The application stores the information in the
database tables shown by Figure 7–2.

Figure 7–2 One-to-Many Relationship: Order and Line Items

Not only does a line item belong to an order, but it also does not exist without the
order. Therefore, the lineitems table should be represented with a helper class
and not with an entity bean. Using a helper class in this case is not required, but
doing so might improve performance because a helper class uses fewer system
resources than does an entity bean.

ONE-TO-MANY RELATIONSHIPS 193
The source code for the following example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/order/

To open the project, choose File→Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial14/examples/ejb/order/, select the
Order directory, and choose Open Project.

The LineItem and OrderBean classes show how to implement a one-to-many
relationship using a helper class (LineItem). The instance variables in the
LineItem class correspond to the columns in the lineitems table. The itemNo
variable matches the primary key for the lineitems table, and the orderId vari-
able represents the table’s foreign key. Here is the source code for the LineItem
class:

public class LineItem implements java.io.Serializable {

 String productId;
 int quantity;
 double unitPrice;
 int itemNo;
 String orderId;

 public LineItem(String productId, int quantity,
 double unitPrice, int itemNo, String orderId) {

 this.productId = productId;
 this.quantity = quantity;
 this.unitPrice = unitPrice;
 this.itemNo = itemNo;
 this.orderId = orderId;
 }

 public String getProductId() {
 return productId;
 }

 public int getQuantity() {
 return quantity;
 }

 public double getUnitPrice() {
 return unitPrice;
 }

 public int getItemNo() {

194 BEAN-MANAGED PERSISTENCE EXAMPLES
 return itemNo;
 }

 public String getOrderId() {
 return orderId;
 }
}

The OrderBean class contains an ArrayList variable named lineItems. Each
element in the lineItems variable is a LineItem object. The lineItems variable
is passed to the OrderBean class in the ejbCreate method. For every LineItem
object in the lineItems variable, the ejbCreate method inserts a row into the
lineitems table. It also inserts a single row into the orders table. The code for
the ejbCreate method follows:

public String ejbCreate(String orderId, String customerId,
 String status, double totalPrice, ArrayList lineItems)
 throws CreateException {

 try {
 insertOrder(orderId, customerId, status, totalPrice);
 for (int i = 0; i < lineItems.size(); i++) {
 LineItem item = (LineItem)lineItems.get(i);
 insertItem(item);
 }
 } catch (Exception ex) {
 throw new EJBException("ejbCreate: " +
 ex.getMessage());
 }

 this.orderId = orderId;
 this.customerId = customerId;
 this.status = status;
 this.totalPrice = totalPrice;
 this.lineItems = lineItems ;

 return orderId;
}

ONE-TO-MANY RELATIONSHIPS 195
The OrderClient program creates and loads an ArrayList of LineItem objects.
The program passes this ArrayList to the entity bean when it invokes the cre-
ate method:

ArrayList lineItems = new ArrayList();
lineItems.add(new LineItem("p23", 13, 12.00, 1, "123"));
lineItems.add(new LineItem("p67", 47, 89.00, 2, "123"));
lineItems.add(new LineItem("p11", 28, 41.00, 3, "123"));
...
OrderRemote duke = home.create("123", "c44", "open",
 totalItems(lineItems), lineItems);

Other methods in the OrderBean class also access both database tables. The
ejbRemove method, for example, not only deletes a row from the orders table
but also deletes all corresponding rows in the lineitems table. The ejbLoad and
ejbStore methods synchronize the state of an OrderBean instance, including the
lineItems ArrayList, with the orders and lineitems tables.

The ejbFindByProductId method enables clients to locate all orders that have a
particular product. This method queries the lineitems table for all rows with a
specific productId. The method returns a Collection of Order objects. The
OrderClient program iterates through the Collection and prints the primary
key of each order:

Collection c = home.findByProductId("p67");
Iterator i=c.iterator();
while (i.hasNext()) {
 OrderRemote order = (OrderRemote)i.next();
 String id = (String)order.getPrimaryKey();
 System.out.println(id);
}

Running the OrderBean Example
1. In the IDE, choose Tools→PointBase Database→Start Local PointBase

Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/order/

196 BEAN-MANAGED PERSISTENCE EXAMPLES
c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/order/, select the Order-
Client directory, and choose Open Project.

4. The project needs to know the location of some JAR files on its classpath
and the Order project. Right-click the OrderClient project and choose
Resolve Reference Problems. Select the “Order” project could not be
found message and click Resolve. In the file chooser, select either the
completed Order project in <INSTALL>/j2eetutorial14/exam-
ples/ejb/order/ or the project you created and click OK.

5. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

6. Right-click the Order project and choose Deploy Project. The IDE builds
the project, deploys the EJB module, and registers a JDBC connection pool
and database resource for the project.

7. Right-click the OrderClient project and choose Run Project. The client
should display the following:

...
123 1 p23 12.0
123 2 p67 89.0
123 3 p11 41.0

123
456

An Entity Bean for the Child Table
You should consider building an entity bean for a child table under the following
conditions:

• The information in the child table is not dependent on the parent table.
• The business entity of the child table could exist without that of the parent

table.
• The child table might be accessed by another application that does not

access the parent table.

ONE-TO-MANY RELATIONSHIPS 197
These conditions exist in the following scenario. Suppose that each sales repre-
sentative in a company has multiple customers and that each customer has only
one sales representative. The company tracks its sales force using a database
application. In the database, each row in the salesrep table (parent) matches
multiple rows in the customer table (child). Figure 7–3 illustrates this relation-
ship.

Figure 7–3 One-to-Many Relationship: Sales Representative and Customers

The SalesRepBean and CustomerBean entity bean classes implement the one-to-
many relationship of the sales and customer tables.

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/salesrep/

To open the project, choose File→Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial14/examples/ejb/salesrep/, select the SalesRep direc-
tory, and choose Open Project.

The SalesRepBean class contains a variable named customerIds, which is an
ArrayList of String elements. These String elements identify which custom-
ers belong to the sales representative. Because the customerIds variable reflects
this relationship, the SalesRepBean class must keep the variable up-to-date.

The SalesRepBean class instantiates the customerIds variable in the setEnti-
tyContext method and not in ejbCreate. The container invokes setEntity-
Context only once—when it creates the bean instance—thereby ensuring that
customerIds is instantiated only once. Because the same bean instance can
assume different identities during its life cycle, instantiating customerIds in
ejbCreate might cause multiple and unnecessary instantiations. Therefore, the

198 BEAN-MANAGED PERSISTENCE EXAMPLES
SalesRepBean class instantiates the customerIds variable in setEntityCon-
text:

public void setEntityContext(EntityContext context) {

this.context = context;
customerIds = new ArrayList();

try {
Context initial = new InitialContext();
Object objref =

initial.lookup("java:comp/env/ejb/Customer");

customerHome =

(CustomerRemoteHome)PortableRemoteObject.narrow(objref,
CustomerRemoteHome.class);

} catch (Exception ex) {
throw new EJBException("setEntityContext: " +

ex.getMessage());
}

}

Invoked by the ejbLoad method, loadCustomerIds is a private method that
refreshes the customerIds variable. There are two approaches to coding a
method such as loadCustomerIds: fetch the identifiers from the customer data-
base table, or get them from the CustomerBean entity bean. Fetching the identifi-
ers from the database might be faster, but it exposes the code in the
SalesRepBean class to the CustomerBean bean’s underlying database table. In
the future, if you were to change the CustomerBean bean’s table (or move the
bean to a different Application Server), you might need to change the SalesRep-
Bean code. But if the SalesRepBean class gets the identifiers from the Custom-
erBean entity bean, no coding changes would be required. The two approaches
present a trade-off: performance versus flexibility. The SalesRepBean example
opts for flexibility, loading the customerIds variable by calling the find-
BySalesRep and getPrimaryKey methods of CustomerBean. Here is the code
for the loadCustomerIds method:

private void loadCustomerIds() {

 customerIds.clear();

 try {
 Collection c = customerHome.findBySalesRep(salesRepId);
 Iterator i=c.iterator();

ONE-TO-MANY RELATIONSHIPS 199
 while (i.hasNext()) {
CustomerRemote customer = (CustomerRemote)i.next();
String id = (String)customer.getPrimaryKey();
customerIds.add(id);

 }

} catch (Exception ex) {
 throw new EJBException("Exception in loadCustomerIds: " +
 ex.getMessage());

}
}

If a customer’s sales representative changes, the client program updates the data-
base by calling the setSalesRepId method of the CustomerBean class. The next
time a business method of the SalesRepBean class is called, the ejbLoad method
invokes loadCustomerIds, which refreshes the customerIds variable. (To
ensure that ejbLoad is invoked before each business method, set the transaction
attributes of the business methods to Required.) For example, the SalesRep-
Client program changes the salesRepId for a customer named Mary Jackson
as follows:

CustomerRemote mary = customerHome.findByPrimaryKey("987");
mary.setSalesRepId("543");

The salesRepId value 543 identifies a sales representative named Janice
Martin. To list all of Janice’s customers, the SalesRepClient program invokes
the getCustomerIds method, iterates through the ArrayList of identifiers, and
locates each CustomerBean entity bean by calling its findByPrimaryKey
method:

SalesRepRemote janice = salesHome.findByPrimaryKey("543");
ArrayList a = janice.getCustomerIds();
i = a.iterator();

while (i.hasNext()) {
 String customerId = (String)i.next();
 CustomerRemote customer =
customerHome.findByPrimaryKey(customerId);
 String name = customer.getName();
 System.out.println(customerId + ": " + name);
}

200 BEAN-MANAGED PERSISTENCE EXAMPLES
Running the SalesRepBean Example
1. In the IDE, choose Tools→PointBase Database→Start Local PointBase

Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/salesrep/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/salesrep/, select the
SalesRepClient directory, and choose Open Project.

4. The project needs to know the location of some JAR files on its classpath
and the SalesRep project. Right-click the SalesRepClient project and
choose Resolve Reference Problems. Select the “SalesRep” project

could not be found message and click Resolve. In the file chooser,
select either the completed SalesRep project in
<INSTALL>/j2eetutorial14/examples/ejb/salesrep/ or the project
you created and click OK.

5. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

6. Right-click the SalesRep project and choose Deploy Project. The IDE
builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

7. Right-click the SalesRepClient project and choose Run Project. The client
should display the following:

...
customerId = 221
customerId = 388
customerId = 456
customerId = 844

987: Mary Jackson
221: Alice Smith
388: Bill Williamson

MANY-TO-MANY RELATIONSHIPS 201
456: Joe Smith
844: Buzz Murphy
...

Many-to-Many Relationships
In a many-to-many relationship, each entity can be related to multiple occur-
rences of the other entity. For example, a college course has many students and
each student may take several courses. In a database, this relationship is repre-
sented by a cross-reference table containing the foreign keys. In Figure 7–4, the
cross-reference table is the enrollment table. These tables are accessed by the
StudentBean, CourseBean, and EnrollerBean classes.

Figure 7–4 Many-to-Many Relationship: Students and Courses

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/enroller/

To open the project, choose File→Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial14/examples/ejb/enroller/, select the Enroller direc-
tory, and choose Open Project.

202 BEAN-MANAGED PERSISTENCE EXAMPLES
The StudentBean and CourseBean classes are complementary. Each class con-
tains an ArrayList of foreign keys. The StudentBean class contains an ArrayL-
ist named courseIds, which identifies the courses the student is enrolled in.
Similarly, the CourseBean class contains an ArrayList named studentIds.

The ejbLoad method of the StudentBean class adds elements to the courseIds
ArrayList by calling loadCourseIds, a private method. The loadCourseIds
method gets the course identifiers from the EnrollerBean session bean. The
source code for the loadCourseIds method follows:

private void loadCourseIds() {

 courseIds.clear();

 try {
 EnrollerRemote enroller = enrollerHome.create();
 ArrayList a = enroller.getCourseIds(studentId);
 courseIds.addAll(a);

} catch (Exception ex) {
 throw new EJBException("Exception in loadCourseIds: " +
 ex.getMessage());

}
}

Invoked by the loadCourseIds method, the getCourseIds method of the
EnrollerBean class queries the enrollment table:

select courseid from enrollment
where studentid = ?

Only the EnrollerBean class accesses the enrollment table. Therefore, the
EnrollerBean class manages the student-course relationship represented in the
enrollment table. If a student enrolls in a course, for example, the client calls
the enroll business method, which inserts a row:

insert into enrollment
values (studentid, courseid)

If a student drops a course, the unEnroll method deletes a row:

delete from enrollment
where studentid = ? and courseid = ?

MANY-TO-MANY RELATIONSHIPS 203
And if a student leaves the school, the deleteStudent method deletes all rows
in the table for that student:

delete from enrollment
where student = ?

The EnrollerBean class does not delete the matching row from the student
table. That action is performed by the ejbRemove method of the StudentBean
class. To ensure that both deletes are executed as a single operation, you must
ensure that they belong to the same transaction.

Running the EnrollerBean Example
1. In the IDE, choose Tools→PointBase Database→Start Local PointBase

Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/enroller/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/enroller/, select the
EnrollerClient directory, and choose Open Project.

4. The project needs to know the location of some JAR files on its classpath
and the Enroller project. Right-click the EnrollerClient project and choose
Resolve Reference Problems. Select the “Enroller” project could not
be found message and click Resolve. In the file chooser, select either the
completed Enroller project in
<INSTALL>/j2eetutorial14/examples/ejb/enroller/ or the project
you created and click OK.

5. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

204 BEAN-MANAGED PERSISTENCE EXAMPLES
6. Right-click the Enroller project and choose Deploy Project. The IDE
builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

7. Right-click the EnrollerClient project and choose Run Project. The client
should display the following:

...
Denise Smith:
220 Power J2EE Programming
333 XML Made Easy
777 An Introduction to Java Programming

An Introduction to Java Programming:
823 Denise Smith
456 Joe Smith
388 Elizabeth Willis
...

Primary Keys for Bean-Managed
Persistence

You specify the primary key class in the entity bean’s deployment descriptor. In
most cases, your primary key class will be a String, an Integer, or some other
class that belongs to the J2SE or J2EE standard libraries. For some entity beans,
you will need to define your own primary key class. For example, if the bean has
a composite primary key (that is, one composed of multiple fields), then you
must create a primary key class.

The Primary Key Class
The following primary key class is a composite key, the productId and ven-
dorId fields together uniquely identify an entity bean.

public class ItemKey implements java.io.Serializable {

 public String productId;
 public String vendorId;

 public ItemKey() { };

 public ItemKey(String productId, String vendorId) {

THE PRIMARY KEY CLASS 205
 this.productId = productId;
 this.vendorId = vendorId;
 }

 public String getProductId() {

 return productId;
 }

 public String getVendorId() {

 return vendorId;
 }

 public boolean equals(Object other) {

 if (other instanceof ItemKey) {
 return (productId.equals(((ItemKey)other).productId)
 && vendorId.equals(((ItemKey)other).vendorId));
 }
 return false;
 }

 public int hashCode() {

 return productId.concat(vendorId).hashCode();
 }
}

For bean-managed persistence, a primary key class must meet these require-
ments:

• The access control modifier of the class must be public.
• All fields must be declared as public.
• The class must have a public default constructor.
• The class must implement the hashCode() and equals(Object other)

methods.
• The class must be serializable.

206 BEAN-MANAGED PERSISTENCE EXAMPLES
Primary Keys in the Entity Bean Class
With bean-managed persistence, the ejbCreate method assigns the input param-
eters to instance variables and then returns the primary key class:

public ItemKey ejbCreate(String productId, String vendorId,
 String description) throws CreateException {

 if (productId == null || vendorId == null) {
 throw new CreateException(
 "The productId and vendorId are required.");
 }

 this.productId = productId;
 this.vendorId = vendorId;
 this.description = description;

 return new ItemKey(productId, vendorId);
}

The ejbFindByPrimaryKey verifies the existence of the database row for the
given primary key:

public ItemKey ejbFindByPrimaryKey(ItemKey primaryKey)
 throws FinderException {

 try {
 if (selectByPrimaryKey(primaryKey))
 return primaryKey;
 ...
}

private boolean selectByPrimaryKey(ItemKey primaryKey)
 throws SQLException {

 String selectStatement =
 "select productid " +
 "from item where productid = ? and vendorid = ?";
 PreparedStatement prepStmt =
 con.prepareStatement(selectStatement);
 prepStmt.setString(1, primaryKey.getProductId());
 prepStmt.setString(2, primaryKey.getVendorId());
 ResultSet rs = prepStmt.executeQuery();
 boolean result = rs.next();
 prepStmt.close();
 return result;
}

GETTING THE PRIMARY KEY 207
Getting the Primary Key
A client can fetch the primary key of an entity bean by invoking the getPrima-
ryKey method of the EJBObject class:

SavingsAccountRemote account;
...
String id = (String)account.getPrimaryKey();

The entity bean retrieves its own primary key by calling the getPrimaryKey
method of the EntityContext class:

EntityContext context;
...
String id = (String) context.getPrimaryKey();

208 BEAN-MANAGED PERSISTENCE EXAMPLES

8

209
Container-Managed
Persistence Examples

AN entity bean with container-managed persistence (CMP) offers important
advantages to the bean developer. First, the EJB container handles all database
storage and retrieval calls. Second, the container manages the relationships
between the entity beans. Because of these services, you don’t have to code the
database access calls in the entity bean. Instead, you specify settings in the
bean’s deployment descriptor. Not only does this approach save you time, but
also it makes the bean portable across various database servers.

This chapter focuses on the source code and deployment settings for an example
called Roster, an application that features entity beans with container-managed
persistence. If you are unfamiliar with the terms and concepts mentioned in this
chapter, please consult the section Container-Managed Persistence (page 113).

Overview of the Roster Module
The Roster module maintains the team rosters for players in sports leagues. The
example has five components. The RosterClient component is an application
client that accesses the RosterBean session bean through the bean’s remote
interfaces. RosterBean accesses three entity beans—PlayerBean, TeamBean,
and LeagueBean—through their local interfaces.

210 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The entity beans use container-managed persistence and relationships. The
TeamBean and PlayerBean entity beans have a bidirectional, many-to-many rela-
tionship. In a bidirectional relationship, each bean has a relationship field whose
value identifies the related bean instance. The multiplicity of the TeamBean-
PlayerBean relationship is many-to-many: Players who participate in more than
one sport belong to multiple teams, and each team has multiple players. The
LeagueBean and TeamBean entity beans also have a bidirectional relationship,
but the multiplicity is one-to-many: A league has many teams, but a team can
belong to only one league.

Figure 8–1 shows the components and relationships of the Roster module. The
dotted lines represent the access gained through invocations of the JNDI lookup
method. The solid lines represent the container-managed relationships.

Figure 8–1 Roster Example

Creating the Roster EJB Module
To create this project in the IDE, you will create an EJB module project, create
the database in PointBase, and generate the CMP entity beans from the database.

CREATING THE PROJECT 211
You will then create a session bean through which the client application accesses
the entity beans.

Complete versions of both the EJB module and the client application for this
example are in the <INSTALL>/j2eetutorial14/examples/ejb/cmproster
directory.

Creating the Project
1. Choose File→New Project (Ctrl-Shift-N).
2. From the Enterprise template category, select EJB Module and click Next.
3. Name the project Roster, specify a location for the project, and click Fin-

ish.

Creating the Database Tables
The Roster example uses the database tables shown in Table 8–2.

212 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Figure 8–2 Database Tables in Roster

The instructions that follow explain how to use the Roster example with Point-
Base, the database software that is included in the Application Server bundle.

1. Choose Tools→PointBase Database→Start Local PointBase Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. In the Runtime window, expand the Databases node, right-click the
jdbc:pointbase:server://localhost:9092/sun-appserv-samples

node, and choose Connect. Type pbpublic as the password and click OK.

GENERATING THE CMP ENTITY BEANS 213
Once the connection is established, expand the connection node’s Tables
node. There should be nodes for the following tables:
• LEAGUE

• PLAYER

• TEAM

• TEAM-PLAYER

Generating the CMP Entity Beans
1. In the Projects window, right-click the Enterprise Beans node for the Ros-

ter project and choose New→CMP Entity Beans From Database.
2. In the JDBC Connection combo box, select jdbc:pointbase://local-

host:9092/sun-appserv-samples. In the Package field, type team. Leave the
default settings in the rest of the wizard and click Next.

3. From the list, select PLAYER, LEAGUE, TEAM, and TEAM_PLAYER and click
Add. Then click Finish. You can view the generated entity beans under the
project’s Enterprise Beans node.

The PlayerBean Code
The PlayerBean entity bean represents a player in a sports league. Like any
local entity bean with container-managed persistence, PlayerBean needs the fol-
lowing code:

• Entity bean class (PlayerBean)
• Local home interface (PlayerLocalHome)
• Local interface (PlayerLocal)

In addition to these standard files, the IDE also creates a business interface
(PlayerLocalBusiness) in which it registers business methods.

The source code for this example is in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/Roster/src/java
directory.

214 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Entity Bean Class
The code of the entity bean class must meet the container-managed persistence
syntax requirements. First, the class must be defined as public and abstract.
Second, the class must implement the following:

• The EntityBean interface
• Zero or more ejbCreate and ejbPostCreate methods
• The get and set access methods, defined as abstract, for the persistent

and relationship fields
• Any select methods, defining them as abstract
• The home methods
• The business methods

The entity bean class must not implement these methods:

• The finder methods
• The finalize method

Differences between Container-Managed and Bean-
Managed Code
Because it contains no calls to access the database, an entity bean with container-
managed persistence requires a lot less code than one with bean-managed persis-
tence. For example, the PlayerBean.java source file discussed in this chapter is
much smaller than the SavingsAccountBean.java code documented in
Chapter 7. Table 8–1 compares the code of the two types of entity beans.

Table 8–1 Coding Differences between Persistent Types

Difference Container-Managed Bean-Managed

Class definition Abstract Not abstract

Database access calls Handled by container Coded by developers

Persistent state Represented by virtual persis-
tent fields Coded as instance variables

Access methods for persis-
tent and relationship fields Required None

ENTITY BEAN CLASS 215
Note that for both types of persistence, the rules for implementing business and
home methods are the same. See the sections The Business Methods (page 180)
and The Home Methods (page 182) in Chapter 7.

Access Methods
An entity bean with container-managed persistence has persistent and relation-
ship fields. These fields are virtual, so you do not code them in the class as
instance variables. Instead, you specify them in the bean’s deployment descrip-
tor. To permit access to the fields, you define abstract get and set methods in
the entity bean class.

Access Methods for Persistent Fields
The EJB container automatically performs the database storage and retrieval of
the bean’s persistent fields. The deployment descriptor of PlayerBean specifies
the following persistent fields:

• id (primary key)
• name

• position

• salary

You can view the CMP fields for each bean by expanding the project’s Configu-
ration Files node, double-clicking ejb-jar.xml, and expanding the CMP Fields
section for the bean.

findByPrimaryKey method Handled by container Coded by developers

Customized finder methods
Handled by container, but the
developer must define the
EJB QL queries

Coded by developers

Select methods Handled by container None

Return value of ejbCreate null Must be the primary key

Table 8–1 Coding Differences between Persistent Types (Continued)

Difference Container-Managed Bean-Managed

216 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The PlayerBean class defines the access methods for the persistent fields as fol-
lows:

public abstract String getId();
public abstract void setId(String id);

public abstract String getName();
public abstract void setName(String name);

public abstract String getPosition();
public abstract void setPosition(String position);

public abstract Double getSalary();
public abstract void setSalary(Double salary);

The IDE generates each of these getter and setter methods based on the informa-
tion it finds in the database. The name of an access method begins with get or
set, followed by the capitalized name of the persistent or relationship field. For
example, the accessor methods for the salary field are getSalary and setSal-
ary. This naming convention is similar to that of JavaBeans components.

Access Methods for Relationship Fields
In the Roster module, a player can belong to multiple teams, so a PlayerBean
instance may be related to many TeamBean instances. To specify this relation-
ship, the deployment descriptor of PlayerBean defines a relationship field
named teams.

The IDE generates the names of CMP fields and relationship fields based solely
on the names of the columns it finds in the database. You can give these fields
better names by editing the ejb-jar.xml deployment descriptor.

1. In the Projects window, expand the Configuration Files node for the Roster
project and double-click ejb-jar.xml.

2. In the top of the visual editor, click CMP Relationships. The table lists all
of the CMP relationships for the EJB module.

3. Select the TeamPlayer row in the table and click Edit. The information on
the left of the dialog box defines the PlayerBean side of the relationship,
while the information on the right describes the TeamBean side of the rela-
tionship. The multiplicity is set to Many To Many because a team has
many players and a player can belong to more than one team.

ENTITY BEAN CLASS 217
Under the PlayerID role, change the value of the Field Name setting from
teamId to teams. Under the TeamID role, change the Field Name setting
from playerId to players. Then click OK.

4. In the TeamBean-LeagueBean CMP relationship, change the field name for
the TeamBean role to league and the field name for the LeagueID role to
teams.

Notice that the access methods in the enterprise beans are automatically updated
to use the new field names. For example, in the PlayerBean class, the access
methods for the teams relationship field are as follows:

public abstract Collection getTeams();
public abstract void setTeams(Collection teams);

Finder and Select Methods
Finder and select methods use EJB QL queries to return objects and state infor-
mation of entity beans using container-managed persistence.

A select method is similar to a finder method in the following ways:

• A select method can return a local or remote interface (or a collection of
interfaces).

• A select method queries a database.
• The deployment descriptor specifies an EJB QL query for a select method.
• The entity bean class does not implement the select method.

However, a select method differs significantly from a finder method:

• A select method can return a persistent field (or a collection thereof) of a
related entity bean. A finder method can return only a local or remote inter-
face (or a collection of interfaces).

• Because it is not exposed in any of the local or remote interfaces, a select
method cannot be invoked by a client. It can be invoked only by the meth-
ods implemented within the entity bean class. A select method is usually
invoked by either a business or a home method.

• A select method is defined in the entity bean class. For bean-managed per-
sistence, a finder method is defined in the entity bean class, but for con-
tainer-managed persistence it is not.

The IDE automatically generated finder methods for each of your CMP fields
when it generated them from the database. In order to run more sophisticated

218 CONTAINER-MANAGED PERSISTENCE EXAMPLES
queries on the database, you have to add some additional finder methods to the
PlayerBean entity bean.

1. In the Projects window, expand the Configuration Files node and double-
click ejb-jar.xml.

2. Expand the PlayerEB section and the CMP Finder Methods section and
click Add.

3. Use the dialog box to add the finder methods in the following table:

Table 8–2 Additional finder methods for PlayerBean entity bean

Name Cardinality EJBQL Parameters

findAll Many select object(p) from
Player p

none

findByCity Many

select distinct object(p)

from Player p,

in (p.teams) as t
where t.city = ?1

String city

findByHigherSalary Many

select distinct object(p1)

from Player p1, Player p2

where p1.salary > p2.sal-

ary and
p2.name = ?1

String name

findByLeague Many

select distinct object(p)

from Player p,

in (p.teams) as t
where t.league = ?1

team.League
Local
league

findByPositionAnd-
Name Many

select distinct object(p)

from Player p
where p.position = ?1 and
p.name = ?2

String
position,
String name

findBySalaryRange Many

select distinct object(p)

from Player p
where p.salary between ?1
and ?2

double low,
double high

ENTITY BEAN CLASS 219
You also have to code your bean’s select methods.

1. In the PlayerEB section of the ejb-jar.xml editor, expand the CMP Select
Methods section and click Add.

2. Use the Add Select Method dialog box to add the select methods in the fol-
lowing table:

findBySport Many

select distinct object(p)

from Player p,

in (p.teams) as t
where t.league.sport = ?1

String
sport

findByTest Many

select distinct object(p)

from Player p
where p.name = ?1

String
parm1,
String
parm2,
String
parm3

findNotOnTeam Many
select object(p) from

Player p

where p.teams is empty

none

Table 8–3 Select methods for the PlayerBean entity bean

Name Return Type EJBQL Parameters

ejbSelectLeagues java.util.C
ollection

select distinct
t.league
from Player p, in
(p.teams) as t
where p = ?1

team.PlayerLocal
player

ejbSelectSports java.util.C
ollection

select distinct
t.league.sport
from Player p, in
(p.teams) as t
where p = ?1

team.PlayerLocal
player

Table 8–2 Additional finder methods for PlayerBean entity bean

Name Cardinality EJBQL Parameters

220 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The signature for a select method must follow these rules:

• The prefix of the method name must be ejbSelect.
• The access control modifier must be public.
• The method must be declared as abstract.
• The throws clause must include the javax.ejb.FinderException.

Helper Classes
The enterprise beans in the Roster EJB module depend on a few helper classes.
You have to add these classes to the EJB module before you continue coding the
enterprise beans.

1. Copy the <INSTALL>/j2eetutorial14/examples/ejb/cmpros-
ter/Roster/src/java/util directory to the src/java directory of your
Roster project.

2. In the Projects window, expand the Source Packages node for the Roster
project. The util package should appear under the node.

Business Methods
Because clients cannot invoke select methods, the PlayerBean class wraps them
in the getLeagues and getSports business methods.

Note: You can quickly copy business methods to an enterprise bean by copying and
pasting the methods into your bean class, then right-clicking the method name in
the Source Editor and choosing EJB Methods→Add to Local Interface. When you
are done, press Alt-Shift-F to generate any missing import statements.

1. In the Source Editor, right-click anywhere in the body of the PlayerBean
class and choose EJB Methods→Add Business Method.

2. In the Name field, type getLeagues. In the Return Type combo box, type
Collection.

3. In the Exceptions tab, use the Add button to add a FinderException.
4. Click OK to generate the finder method in both the bean class and the local

business interface.
5. Edit the getLeagues method as follows:

ENTITY BEAN CLASS 221
public Collection getLeagues() throws FinderException {

PlayerLocal player =
(PlayerLocal)context.getEJBLocalObject();

return ejbSelectLeagues(player);
}

6. Repeat steps 1-5 to enter the following business method:
public Collection getSports() throws FinderException {

PlayerLocal player =
(team.PlayerLocal)context.getEJBLocalObject();

return ejbSelectSports(player);
}

7. You also have to add a few business methods that manage the contents of
each entity bean. Add the following business methods to TeamBean.java:
public void addPlayer(PlayerLocal player) {

Debug.print("TeamBean addPlayer");
try {

Collection players = getPlayers();
players.add(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

public void dropPlayer(PlayerLocal player) {
Debug.print("TeamBean dropPlayer");
try {

Collection players = getPlayers();
players.remove(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

public ArrayList getCopyOfPlayers() {
Debug.print("TeamBean getCopyOfPlayers");
ArrayList playerList = new ArrayList();
Collection players = getPlayers();
Iterator i = players.iterator();
while (i.hasNext()) {

PlayerLocal player = (PlayerLocal) i.next();
PlayerDetails details =
new PlayerDetails(player.getId(), player.getName(),

player.getPosition(), 0.0);
playerList.add(details);

222 CONTAINER-MANAGED PERSISTENCE EXAMPLES
}
return playerList;

}

8. Press Alt-Shift-F to generate the following import statements:
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import util.Debug;
import util.PlayerDetails;

9. Add the following business methods to LeagueBean.java:
public void addTeam(team.TeamLocal team) {

Debug.print("TeamBean addTeam");
try {

Collection teams = getTeams();
teams.add(team);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

public void dropTeam(team.TeamLocal team) {
Debug.print("TeamBean dropTeam");
try {

Collection teams = getTeams();
teams.remove(team);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

10.Press Alt-Shift-F to generate the following import statements:
import java.util.Collection;
import util.Debug;

Note: Since you used simple names in the business method declarations, you also
need to create import statements in the local business interfaces for the TeamBean
and PlayerBean entity beans. You can quickly open the local business interface
by Ctrl-clicking its name in the Source Editor. For example, go to the class declara-
tion of PlayerBean.java, hold down the Ctrl key, and click PlayerLocal-
Business. The class opens in the Source Editor. Then press Alt-Shift-F to generate
the import statements.

REFACTORING ENTITY BEAN METHODS 223
Entity Bean Methods
Because the container handles persistence, the life-cycle methods in the Player-
Bean class are nearly empty.

The ejbCreate method is generated for you by the IDE. It initializes the bean
instance by assigning the input arguments to the persistent fields. At the end of
the transaction that contains the create call, the container inserts a row into the
database. Here is the source code for the ejbCreate method:

public String ejbCreate (String id, String name,
 String position, double salary) throws CreateException {

 setPlayerId(id);
 setName(name);
 setPosition(position);
 setSalary(salary);
 return null;
}

The ejbPostCreate method returns void, and it has the same input parameters
as the ejbCreate method. If you want to set a relationship field to initialize the
bean instance, you should do so in the ejbPostCreate method. You cannot set a
relationship field in the ejbCreate method.

Except for a debug statement, the ejbRemove method in the PlayerBean class is
empty. The container invokes ejbRemove before removing the entity object.

The container automatically synchronizes the state of the entity bean with the
database. After the container loads the bean’s state from the database, it invokes
the ejbLoad method. In like manner, before storing the state in the database, the
container invokes the ejbStore method.

Refactoring Entity Bean Methods
Refactoring is the process of making application-wide changes to your code
without breaking the application’s functionality. For example, the TeamBean
enterprise bean’s ejbCreate method takes four parameters, including a League-
Local leagueId object. Change the method signature to remove the LeagueLo-
cal leagueId object from the list of parameters.

1. In the ejbCreate method, delete the following lines:
if (leagueId == null) {

throw new javax.ejb.CreateException("The field

224 CONTAINER-MANAGED PERSISTENCE EXAMPLES
\"leagueId\" must not be null");
}

2. In the ejbPostCreate method, delete the following line:
setLeagueId(leagueId);

3. Right-click the method name for ejbCreate and choose Refac-
tor→Change Method Parameters. Click Next, select leagueId, and click
Remove. Then click Next to preview the changes that will be made to your
code. Notice that the refactoring will change the method signature of both
the ejbCreate method in the bean class and the create method in the
home interface.

4. In the Refactoring window, click Do Refactoring.

Local Home Interface
The local home interface defines the create, finder, and home methods that can
be invoked by local clients.

The syntax rules for a create method follow:

• The name must begin with create.
• It must have the same number and types of arguments as its matching ejb-

Create method in the entity bean class.
• It must return the local interface type of the entity bean.
• The throws clause must include the exceptions specified by the throws

clause of the corresponding ejbCreate method.
• The throws clause must contain the javax.ejb.CreateException.

These rules apply for a finder method:

• The name must begin with find.
• The return type must be the entity bean’s local interface type or a collection

of those types.
• The throws clause must contain the javax.ejb.FinderException.
• The findByPrimaryKey method must be defined.

An excerpt of the PlayerLocalHome interface follows.

package team;

import java.util.*;
import javax.ejb.*;

LOCAL INTERFACE 225
public interface PlayerLocalHome extends EJBLocalHome {

 public PlayerLocal create (String id, String name,
 String position, Double salary)
 throws CreateException;

 public PlayerLocal findByPrimaryKey (String key)
 throws FinderException;

 public Collection findByPosition(String position)
 throws FinderException;
 ...
 public Collection findByLeague(LeagueLocal league)
 throws FinderException;
 ...
 }

Local Interface
This interface defines the business and access methods that a local client can
invoke. When you create enterprise beans in the IDE, the business method signa-
tures are automatically generated to a LocalBusiness or RemoteBusiness inter-
face that is extended by the bean interface and implemented by the bean class.
The advantage of this approach is that it lets you separate the business logic from
implementation logic, and that it lets you check at compile-time that your bean
implements the given interfaces.

The local interface is therefore almost empty:

package team;

import javax.ejb.*;

public interface PlayerLocal extends EJBLocalObject,
PlayerLocalBusiness {

}

The PlayerBean class implements two business methods: getLeagues and
getSports. It also defines several get and set access methods for the persistent
and relationship fields. The IDE automatically adds both the set and get methods

226 CONTAINER-MANAGED PERSISTENCE EXAMPLES
for the fields to the local business interface. An excerpt of the local business
method is as follows:

package team;

import java.util.Collection;
import javax.ejb.FinderException;

public interface PlayerLocalBusiness {

public abstract String getId();
public abstract String getName();
public abstract void setName(String name);
public abstract String getPosition();

...

Collection getLeagues() throws FinderException;
Collection getSports() throws FinderException;

...

}

Creating the RosterBean Session Bean
You should never directly access entity beans from a client. Instead, clients
should access entity beans through the business methods of a a facade session
bean. In our example, the RosterBean session bean performs this purpose. The
source code for the components is in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster directory.

1. In the Projects window, right-click the Roster node and choose New→Ses-
sion Bean. Enter Roster for the EJB Name, roster for the Package Name,
and set the bean to generate both remote and local interfaces. Then click
Finish.

2. Right-click in the body of the RosterBean class and choose Enterprise
Resources→Call Enterprise Bean. Select LeagueEB and click OK. Repeat
this step to generate lookup code for PlayerEB and TeamEB.

3. Add the following variable declarations to the class:
private PlayerLocalHome playerHome = null;
private TeamLocalHome teamHome = null;
private LeagueLocalHome leagueHome = null;

CREATING THE ROSTERBEAN SESSION BEAN 227
4. Change the ejbCreate, ejbActivate, and ejbPassivate methods to get
and release bean references. The ejbActivate and ejbPassivate meth-
ods are hidden in the EJB Infrastructure methods code fold.
public void ejbCreate() {

Debug.print("RosterBean ejbCreate");
playerHome = lookupPlayerBean();
teamHome = lookupTeamBean();
leagueHome = lookupLeagueBean();

}

public void ejbActivate() {
Debug.print("RosterBean ejbCreate");
playerHome = lookupPlayerBean();
teamHome = lookupTeamBean();
leagueHome = lookupLeagueBean();

}

public void ejbPassivate() {
playerHome = null;
teamHome = null;
leagueHome = null;

}

5. Create the business methods for accessing the entity beans. You can copy
the business methods from the RosterBean class in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/Ros-
ter/src/java directory. The business methods start with testFinder on
line 114 and end with copyPlayersToDetails on line 535. You must also
overwrite your project’s RosterRemoteBusiness interface with the con-
tents of the RosterRemoteBusiness in
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/Ros-
ter/src/java.

6. Select RosterBean.java tab in the Source Editor and press Alt-Shift-F to
generate the following import statements:
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import javax.ejb.*;
import team.LeagueLocal;
import team.LeagueLocalHome;
import team.PlayerLocal;
import team.PlayerLocalHome;
import team.TeamLocal;
import team.TeamLocalHome;
import util.Debug;
import util.LeagueDetails;

228 CONTAINER-MANAGED PERSISTENCE EXAMPLES
import util.PlayerDetails;
import util.TeamDetails;

Method Invocations in the Roster Module
To show how the various components interact, this section describes the
sequence of method invocations that occur for particular functions.

The source code for the RosterClient project is in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster directory. When you
open the project, you have to resolve the references to libraries on the project’s
classpath.

1. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/, select the Ros-
terClient directory, and choose Open Project.

2. The project needs to know the location of some JAR files on its classpath
and the Roster project. Right-click the RosterClient project and choose
Resolve Reference Problems. Select the “Roster” project could not
be found message and click Resolve. In the file chooser, select either the
completed Roster project in <INSTALL>/j2eetutorial14/exam-
ples/ejb/cmproster/ or the project you created and click OK.

3. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

Creating a Player

1. RosterClient
The RosterClient invokes the createPlayer business method of the Roster-
Bean session bean to create a new player. In the following line of code, the type
of the myRoster object is Roster, the remote interface of RosterBean. The argu-
ment of the createPlayer method is a PlayerDetails object, which encapsu-
lates information about a particular player.

myRoster.createPlayer(new PlayerDetails("P1", "Phil Jones",
"goalkeeper", 100.00));

CREATING A PLAYER 229
2. RosterBean
The createPlayer method of the RosterBean session bean creates a new
instance of the PlayerBean entity bean. Because the access of PlayerBean is
local, the create method is defined in the local home interface, PlayerLocal-
Home. The type of the playerHome object is PlayerLocalHome. Here is the
source code for the createPlayer method:

public void createPlayer(PlayerDetails details) {

try {
PlayerLocal player = playerHome.create(details.getId(),

details.getName(), details.getPosition(),
new Double(details.getSalary()));

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

3. PlayerBean
The ejbCreate method assigns the input arguments to the bean’s persistent
fields by calling the set access methods. At the end of the transaction that con-
tains the create call, the container saves the persistent fields in the database by
issuing an SQL INSERT statement. The code for the ejbCreate method follows.

public String ejbCreate (String id, String name,
String position, Double salary) throws CreateException {

setId(id);
setName(name);
setPosition(position);
setSalary(salary);
return null;

}

230 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Adding a Player to a Team

1. RosterClient
The RosterClient calls the addPlayer business method of the RosterBean ses-
sion bean to add player P1 to team T1. The P1 and T1 parameters are the primary
keys of the PlayerBean and TeamBean instances, respectively.

 myRoster.addPlayer("P1", "T1");

2. RosterBean
The addPlayer method performs two steps. First, it calls findByPrimaryKey to
locate the PlayerBean and TeamBean instances. Second, it invokes the
addPlayer business method of the TeamBean entity bean. Here is the source
code for the addPlayer method of the RosterBean session bean:

public void addPlayer(String playerId, String teamId) {

try {
TeamLocal team = teamHome.findByPrimaryKey(teamId);
PlayerLocal player =

playerHome.findByPrimaryKey(playerId);
team.addPlayer(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

3. TeamBean
The TeamBean entity bean has a relationship field named players, a Collection
that represents the players that belong to the team. The access methods for the
players relationship field are as follows:

public abstract Collection getPlayers();
public abstract void setPlayers(Collection players);

The addPlayer method of TeamBean invokes the getPlayers access method to
fetch the Collection of related PlayerLocal objects. Next, the addPlayer

REMOVING A PLAYER 231
method invokes the add method of the Collection interface. Here is the source
code for the addPlayer method:

public void addPlayer(PlayerLocal player) {
try {

Collection players = getPlayers();
players.add(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

Removing a Player

1. RosterClient
To remove player P4, the client would invoke the removePlayer method of the
RosterBean session bean:

myRoster.removePlayer("P4");

2. RosterBean
The removePlayer method locates the PlayerBean instance by calling findBy-
PrimaryKey and then invokes the remove method on the instance. This invoca-
tion signals the container to delete the row in the database that corresponds to the
PlayerBean instance. The container also removes the item for this instance from
the players relationship field in the TeamBean entity bean. By this removal, the
container automatically updates the TeamBean-PlayerBean relationship. Here is
the removePlayer method of the RosterBean session bean:

public void removePlayer(String playerId) {
try {

PlayerLocal player =
playerHome.findByPrimaryKey(playerId);

player.remove();
} catch (Exception ex) {

throw new EJBException(ex.getMessage());
}

}

232 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Dropping a Player from a Team

1. RosterClient
To drop player P2 from team T1, the client would call the dropPlayer method of
the RosterBean session bean:

myRoster.dropPlayer("P2", "T1");

2. RosterBean
The dropPlayer method retrieves the PlayerBean and TeamBean instances by
calling their findByPrimaryKey methods. Next, it invokes the dropPlayer busi-
ness method of the TeamBean entity bean. The dropPlayer method of the Ros-
terBean session bean follows:

public void dropPlayer(String playerId, String teamId) {

try {
PlayerLocal player =

playerHome.findByPrimaryKey(playerId);
TeamLocal team = teamHome.findByPrimaryKey(teamId);
team.dropPlayer(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

3. TeamBean
The dropPlayer method updates the TeamBean-PlayerBean relationship. First,
the method retrieves the Collection of PlayerLocal objects that correspond to
the players relationship field. Next, it drops the target player by calling the
remove method of the Collection interface. Here is the dropPlayer method of
the TeamBean entity bean:

public void dropPlayer(PlayerLocal player) {

try {
Collection players = getPlayers();
players.remove(player);

GETTING THE PLAYERS OF A TEAM 233
} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

Getting the Players of a Team

1. RosterClient
The client can fetch a team’s players by calling the getPlayersOfTeam method
of the RosterBean session bean. This method returns an ArrayList of Player-
Details objects. A PlayerDetail object contains four variables—playerId,
name, position, and salary—which are copies of the PlayerBean persistent
fields. The RosterClient calls the getPlayersOfTeam method as follows:

playerList = myRoster.getPlayersOfTeam("T2");

2. RosterBean
The getPlayersOfTeam method of the RosterBean session bean locates the
TeamLocal object of the target team by invoking the findByPrimaryKey
method. Next, the getPlayersOfTeam method calls the getPlayers method of
the TeamBean entity bean. Here is the source code for the getPlayersOfTeam
method:

public ArrayList getPlayersOfTeam(String teamId) {

Collection players = null;

try {
TeamLocal team = teamHome.findByPrimaryKey(teamId);
players = team.getPlayers();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return copyPlayersToDetails(players);
}

234 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The getPlayersOfTeam method returns the ArrayList of PlayerDetails
objects that is generated by the copyPlayersToDetails method:

private ArrayList copyPlayersToDetails(Collection players) {

ArrayList detailsList = new ArrayList();
Iterator i = players.iterator();

while (i.hasNext()) {
PlayerLocal player = (PlayerLocal) i.next();
PlayerDetails details =

new PlayerDetails(player.getId(),
player.getName(), player.getPosition(),
player.getSalary().doubleValue());

detailsList.add(details);
}

return detailsList;
}

3. TeamBean
The getPlayers method of the TeamBean entity bean is an access method of the
players relationship field:

public abstract Collection getPlayers();

This method is exposed to local clients because it is defined in the local inter-
face, TeamLocal:

public Collection getPlayers();

When invoked by a local client, a get access method returns a reference to the
relationship field. If the local client alters the object returned by a get access
method, it also alters the value of the relationship field inside the entity bean. For
example, a local client of the TeamBean entity bean could drop a player from a
team as follows:

TeamLocal team = teamHome.findByPrimaryKey(teamId);
Collection players = team.getPlayers();
players.remove(player);

If you want to prevent a local client from modifying a relationship field in this
manner, you should take the approach described in the next section.

GETTING A COPY OF A TEAM’S PLAYERS 235
Getting a Copy of a Team’s Players
In contrast to the methods discussed in the preceding section, the methods in this
section demonstrate the following techniques:

• Filtering the information passed back to the remote client
• Preventing the local client from directly modifying a relationship field

1. RosterClient
If you wanted to hide the salary of a player from a remote client, you would
require the client to call the getPlayersOfTeamCopy method of the RosterBean
session bean. Like the getPlayersOfTeam method, the getPlayersOfTeamCopy
method returns an ArrayList of PlayerDetails objects. However, the objects
returned by getPlayersOfTeamCopy are different: their salary variables have
been set to zero. The RosterClient calls the getPlayersOfTeamCopy method as
follows:

playerList = myRoster.getPlayersOfTeamCopy("T5");

2. RosterBean
Unlike the getPlayersOfTeam method, the getPlayersOfTeamCopy method
does not invoke the getPlayers access method that is exposed in the TeamLocal
interface. Instead, the getPlayersOfTeamCopy method retrieves a copy of the
player information by invoking the getCopyOfPlayers business method that is
defined in the TeamLocal interface. As a result, the getPlayersOfTeamCopy
method cannot modify the players relationship field of TeamBean. Here is the
source code for the getPlayersOfTeamCopy method of RosterBean:

public ArrayList getPlayersOfTeamCopy(String teamId) {

ArrayList playersList = null;

try {
TeamLocal team = teamHome.findByPrimaryKey(teamId);
playersList = team.getCopyOfPlayers();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

236 CONTAINER-MANAGED PERSISTENCE EXAMPLES
}

return playersList;
}

3. TeamBean
The getCopyOfPlayers method of TeamBean returns an ArrayList of Player-
Details objects. To create this ArrayList, the method iterates through the Col-
lection of related PlayerLocal objects and copies information to the variables
of the PlayerDetails objects. The method copies the values of PlayerBean
persistent fields—except for the salary field, which it sets to zero. As a result, a
player’s salary is hidden from a client that invokes the getPlayersOfTeamCopy
method. The source code for the getCopyOfPlayers method of TeamBean fol-
lows.

public ArrayList getCopyOfPlayers() {

ArrayList playerList = new ArrayList();
Collection players = getPlayers();

Iterator i = players.iterator();
while (i.hasNext()) {

PlayerLocal player = (PlayerLocal) i.next();
PlayerDetails details =

new PlayerDetails(player.getPlayerId(),
player.getName(), player.getPosition(), 0.00);

playerList.add(details);
}

return playerList;
}

Finding the Players by Position

1. RosterClient
The client starts the procedure by invoking the getPlayersByPosition method
of the RosterBean session bean:

playerList = myRoster.getPlayersByPosition("defender");

FINDING THE PLAYERS BY POSITION 237
2. RosterBean
The getPlayersByPosition method retrieves the players list by invoking the
findByPosition method of the PlayerBean entity bean:

public ArrayList getPlayersByPosition(String position) {

Collection players = null;

try {
players = playerHome.findByPosition(position);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return copyPlayersToDetails(players);
}

3. PlayerBean
The PlayerLocalHome interface defines the findByPosition method:

public Collection findByPosition(String position)
throws FinderException;

Because the PlayerBean entity bean uses container-managed persistence, the
entity bean class (PlayerBean) does not implement its finder methods. To spec-
ify the queries associated with the finder methods, EJB QL queries must be
defined in the bean’s deployment descriptor. For example, the findByPosition
method has this EJB QL query:

SELECT DISTINCT OBJECT(p) FROM Player p
WHERE p.position = ?1

At runtime, when the container invokes the findByPosition method, it will
execute the corresponding SQL SELECT statement.

For details about configuring the EJB QL in the deployment descriptors, see
Finder and Select Methods.

238 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Getting the Sports of a Player

1. RosterClient
The client invokes the getSportsOfPlayer method of the RosterBean session
bean:

sportList = myRoster.getSportsOfPlayer("P28");

2. RosterBean
The getSportsOfPlayer method returns an ArrayList of String objects that
represent the sports of the specified player. It constructs the ArrayList from a
Collection returned by the getSports business method of the PlayerBean
entity bean. Here is the source code for the getSportsOfPlayer method of the
RosterBean session bean:

public ArrayList getSportsOfPlayer(String playerId) {

ArrayList sportsList = new ArrayList();
Collection sports = null;

try {
PlayerLocal player =

playerHome.findByPrimaryKey(playerId);
sports = player.getSports();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

Iterator i = sports.iterator();
while (i.hasNext()) {

String sport = (String) i.next();
sportsList.add(sport);

}
return sportsList;

}

3. PlayerBean
The getSports method is a wrapper for the ejbSelectSports method. Because
the parameter of the ejbSelectSports method is of type PlayerLocal, the

BUILDING AND RUNNING THE ROSTER EXAMPLE 239
getSports method passes along a reference to the entity bean instance. The
PlayerBean class implements the getSports method as follows:

public Collection getSports() throws FinderException {

PlayerLocal player =
(team.PlayerLocal)context.getEJBLocalObject();

return ejbSelectSports(player);
}

The PlayerBean class defines the ejbSelectSports method:

public abstract Collection ejbSelectSports(PlayerLocal player)
throws FinderException;

The bean’s deployment descriptor specifies the following EJB QL query for the
ejbSelectSports method:

SELECT DISTINCT t.league.sport
FROM Player p, IN (p.teams) AS t
WHERE p = ?1

Because PlayerBean uses container-managed persistence, when the ejbSe-
lectSports method is invoked the EJB container will execute its corresponding
SQL SELECT statement.

Building and Running the Roster Example
Once you have coded all of the enterprise beans in the Roster example, you do
not have to configure any more deployment descriptors or server resources. The
IDE configures all of the necessary settings as you create the source code. You
will now build and deploy the module as a stand-alone EJB module, then access
it from the RosterClient project.

The RosterClient project and a completed Roster project are located at
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/.

240 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Building and Deploying the EJB Module
You can build and deploy the module in one action.

1. In the Runtime window, expand the Servers node, right-click the node for
the Sun Java System Application Server, and choose Start/Stop Server. If
the server is stopped, click Start Server in the dialog box.

2. In the Projects window, right-click the Roster project and choose Deploy
Project.

The IDE does all of the following:

1. Compiles the EJB module’s sources and builds the EJB JAR file. You can
view the build output in the project’s build and dist directories in the
Files window.

2. Registers the JDBC connection pool and datasource on the server.
3. Undeploys the module if it is already deployed to the server.
4. Deploys the module to the server.

Running the Client Application
To run the client, follow these steps:

1. If you have not already opened the RosterClient project, choose
File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/, select the Ros-
terClient directory, and choose Open Project.

2. The project needs to know the location of some JAR files on its classpath
and the Roster project. Right-click the RosterClient project and choose
Resolve Reference Problems. Select the “Roster” project could not
be found message and click Resolve. In the file chooser, select either the
completed Roster project in <INSTALL>/j2eetutorial14/exam-
ples/ejb/cmproster/ or the project you created and click OK.

3. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

4. If the PointBase database server is not running, choose Tools→PointBase
Database→Start Local PointBase Database.

PRIMARY KEYS FOR CONTAINER-MANAGED PERSISTENCE 241
5. In the Projects window, right-click the RosterClient project and choose
Run Project.

6. In the Output window, the client displays the following output:

P7 Rebecca Struthers midfielder 777.0

P6 Ian Carlyle goalkeeper 555.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

P8 Anne Anderson forward 65.0

T2 Gophers Manteca

T5 Crows Orland

T1 Honey Bees Visalia

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P25 Frank Fletcher defender 399.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

L1 Mountain Soccer

L2 Valley Basketball

Primary Keys for Container-Managed
Persistence

Sometimes you must implement the class and package it along with the entity
bean. For example, if your entity bean requires a composite primary key (which
is made up of multiple fields) or if a primary key field is a Java programming
language primitive type, then you must provide a customized primary key class.

242 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The Primary Key Class
For container-managed persistence, a primary key class must meet the following
requirements:

• The access control modifier of the class must be public.
• All fields must be declared as public.
• The fields must be a subset of the bean’s persistent fields.
• The class must have a public default constructor.
• The class must implement the hashCode() and equals(Object other)

methods.
• The class must be serializable.

In the following example, the PurchaseOrderKey class implements a composite
key for the PurchaseOrderBean entity bean. The key is composed of two
fields—productModel and vendorId—whose names must match two of the per-
sistent fields in the entity bean class.

public class PurchaseOrderKey implements java.io.Serializable {

public String productModel;
public String vendorId;

public PurchaseOrderKey() { };

public boolean equals(Object other) {

if (other instanceof PurchaseOrderKey) {
return (productModel.equals(

((PurchaseOrderKey)other).productModel) &&
vendorId.equals(
((PurchaseOrderKey)other).vendorId));

}
return false;

}

public int hashCode() {

return productModel.concat(vendorId).hashCode();
}

}

THE PRIMARY KEY CLASS 243
Primary Keys in the Entity Bean Class
In the PurchaseOrderBean class, the following access methods define the per-
sistent fields (vendorId and productModel) that make up the primary key:

public abstract String getVendorId();
public abstract void setVendorId(String id);

public abstract String getProductModel();
public abstract void setProductModel(String name);

The next code sample shows the ejbCreate method of the PurchaseOrderBean
class. The return type of the ejbCreate method is the primary key, but the return
value is null. Although it is not required, the null return value is recommended
for container-managed persistence. This approach saves overhead because the
bean does not have to instantiate the primary key class for the return value.

public PurchaseOrderKey ejbCreate (String vendorId,
 String productModel, String productName)
 throws CreateException {

setVendorId(vendorId);
 setProductModel(productModel);
 setProductName(productName);

 return null;
}

Generating Primary Key Values
For some entity beans, the value of a primary key has a meaning for the business
entity. For example, in an entity bean that represents a player on a sports team,
the primary key might be the player’s driver’s license number. But for other
beans, the key’s value is arbitrary, provided that it’s unique. With container-man-
aged persistence, these key values can be generated automatically by the EJB
container. To take advantage of this feature, an entity bean must meet these
requirements:

• In the deployment descriptor, the primary key class must be defined as a
java.lang.Object. The primary key field is not specified.

• In the home interface, the argument of the findByPrimaryKey method
must be a java.lang.Object.

244 CONTAINER-MANAGED PERSISTENCE EXAMPLES
• In the entity bean class, the return type of the ejbCreate method must be
a java.lang.Object.

In these entity beans, the primary key values are in an internal field that only the
EJB container can access. You cannot associate the primary key with a persistent
field or any other instance variable. However, you can fetch the bean’s primary
key by invoking the getPrimaryKey method on the bean reference, and you can
locate the bean by invoking its findByPrimaryKey method.

Advanced CMP Topics: The Order
Example

The Order application is an advanced CMP example. It contains entity beans
that have self-referential relationships, one-to-one relationships, unidirectional
relationships, unknown primary keys, primitive primary key types, and compos-
ite primary keys.

To open the project, choose File→Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial14/examples/ejb/cmporder/, select the Order direc-
tory, and choose Open Project.

Structure of Order
Order is a simple inventory and ordering application for maintaining a catalog of
parts and placing an itemized order of those parts. It has entity beans that repre-
sent parts, vendors, orders, and line items. These entity beans are accessed using
a stateful session bean that holds the business logic of the application. A simple
command-line client adds data to the entity beans, manipulates the data, and dis-
plays data from the catalog.

The information contained in an order can be divided into different elements.
What is the order number? What parts are included in the order? What parts
make up that part? Who makes the part? What are the specifications for the part?
Are there any schematics for the part? Order is a simplified version of an order-
ing system that has all these elements.

Order consists of two modules: Order, an enterprise bean JAR file containing
the entity beans, the stateful session bean that accesses the data in the entity
beans, the support classes, and the database schema file; and OrderClient, the

BEAN RELATIONSHIPS IN ORDER 245
application client that populates the entity beans with data and manipulates the
data, displaying the results in a terminal.

Figure 8–3 shows Order’s database tables.

Figure 8–3 Database Tables in Order

Bean Relationships in Order
The Order example application shows how to set up one-to-many and many-to-
many relationships between entity beans. Order demonstrates two additional
types of entity bean relationships (see Figure 8–4): one-to-one and self-referen-
tial relationships.

246 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Figure 8–4 Relationships between Entity Beans in Order

Self-Referential Relationships
A self-referential relationship is a relationship between container-managed rela-
tionship fields (CMR) in the same entity bean. PartBean has a CMR field bom-
Part that has a one-to-many relationship with the CMR field parts, which is
also in PartBean. That is, a part can be made up of many parts, and each of those
parts has exactly one bill-of-material part.

The primary key for PartBean is a compound primary key, a combination of the
partNumber and revision fields. It is mapped to the PART_NUMBER and REVI-
SION columns in the PART table.

PRIMARY KEYS IN ORDER’S ENTITY BEANS 247
One-to-One Relationships
PartBean has a CMR field, vendorPart, that has a one-to-one relationship with
VendorPartBean’s CMR field part. That is, each part has exactly one vendor
part, and vice versa.

One-to-Many Relationship Mapped to Overlapping
Primary and Foreign Keys
OrderBean has a CMR field, lineItems, that has a one-to-many relationship
with LineItemBean’s CMR field order. That is, each order has one or more line
item.

LineItemBean uses a compound primary key that is made up of the orderId and
itemId fields. This compound primary key maps to the ORDER_ID and ITEM_ID
columns in the LINEITEM database table. ORDER_ID is a foreign key to the
ORDER_ID column in the ORDERS table. This means that the ORDER_ID column is
mapped twice: once as a primary key field, orderId; and again as a relationship
field, order.

Unidirectional Relationships
LineItemBean has a CMR field, vendorPart, that has a unidirectional many-to-
one relationship with VendorPartBean. That is, there is no CMR field in the tar-
get entity bean in this relationship.

Primary Keys in Order’s Entity Beans
The Order example uses more complicated primary keys than does Roster.

Unknown Primary Keys
In Order, VendorPartBean uses an unknown primary key. That is, the enterprise
bean does not specify a primary key field, and uses java.lang.Object as the
primary key class.

248 CONTAINER-MANAGED PERSISTENCE EXAMPLES
The LocalVendorPartHome interface’s findByPrimaryKey method is defined as
follows:

public LocalVendorPart findByPrimaryKey(Object aKey)
throws FinderException;

See Generating Primary Key Values (page 243) for more information on unkown
primary keys.

Primitive Type Primary Keys
VendorBean uses a primary key that is a Java programming language primitive
type, an int. To use a primitive type as the primary key, you must create a wrap-
per class. VendorKey is the wrapper class for VendorBean.

The wrapper primary key class has the same requirements as described in The
Primary Key Class (page 242). This is the VendorKey wrapper class:

package dataregistry;
public final class VendorKey implements java.io.Serializable {

public int vendorId;

public boolean equals(Object otherOb) {

if (this == otherOb) {
return true;

}
if (!(otherOb instanceof VendorKey)) {

return false;
}
VendorKey other = (VendorKey) otherOb;
return (vendorId == other.vendorId);

}
public int hashCode() {

return vendorId;
}
public String toString() {

return "" + vendorId;
}

}

PRIMARY KEYS IN ORDER’S ENTITY BEANS 249
Compound Primary Keys
A compound primary key is made up of multiple fields and follows the require-
ments described in The Primary Key Class (page 242). To use a compound pri-
mary key, you must create a wrapper class.

In Order, two entity beans use compound primary keys: PartBean and
LineItemBean.

PartBean uses the PartKey wrapper class. PartBean’s primary key is a combi-
nation of the part number and the revision number. PartKey encapsulates this
primary key.

LineItemBean uses the LineItemKey class. LineItemBean’s primary key is a
combination of the order number and the item number. LineItemKey encapsu-
lates this primary key. This is the LineItemKey compound primary key wrapper
class:

package dataregistry;

public final class LineItemKey implements
java.io.Serializable {

public Integer orderId;
public int itemId;

public boolean equals(Object otherOb) {
if (this == otherOb) {

return true;
}
if (!(otherOb instanceof LineItemKey)) {

return false;
}
LineItemKey other = (LineItemKey) otherOb;
return ((orderId==null?other.orderId==null:orderId.equals

(other.orderId)) && (itemId == other.itemId));
}

public int hashCode() {
return ((orderId==null?0:orderId.hashCode())

^ ((int) itemId));
}

public String toString() {
return "" + orderId + "-" + itemId;

}
}

250 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Entity Bean Mapped to More Than One
Database Table
PartBean’s fields map to more than one database table: PART and PART_DETAIL.
The PART_DETAIL table holds the specification and schematics for the part.

Finder and Selector Methods
VendorBean has two finder methods: findByPartialName and findByOrder.
The findByPartialName method searches through the vendor list for matches to
a partial name. findByOrder finds all vendors for a particular order.

LineItemBean has one finder method, findAll, which finds all line items.

OrderBean has one selector method, ejbSelectAll, which returns all orders.

VendorPartBean has two selector methods. ejbSelectAvgPrice returns the
average price of all parts from a vendor. ejbSelectTotalPricePerVendor
returns the price of all the parts from a particular vendor.

Selector methods cannot be accessed outside a bean instance because the selec-
tor methods are not defined in the bean interface. If you are using a selector
method to return data to a caller, the selector method must be called from a home
or business method. In Order, the LocalVendorPartHome.getAvgPrice method
returns the result of the ejbSelectAvgPrice method in VendorPartBean.

The return type of a selector query is usually defined by the return type of the
ejbSelect methods. You must specify the return type as Remote if the method
returns a remote interface or a java.util.Collection of remote interfaces. If
the return type is a local interface or a java.util.Collection of local inter-
faces, set the return type to Local. If the return type is neither a local nor a
remote interface, nor a collection of local or remote interfaces, do not set the
return type. The OrderBean.ejbSelectAll method returns a collection of local
interfaces. VendorPartBean.ejbSelectAvgPrice and VendorPartBean.ejb-
SelectTotalPricePerVendor return a Double, so the return type is set to None.

Using Home Methods
Home methods are defined in the home interface of a bean and correspond to
methods named ejbHome<METHOD> in the bean class. For example, a method
getValue, defined in the LocalExampleHome interface, corresponds to the ejb-

CASCADE DELETES IN ORDER 251
HomeGetValue method implemented in ExampleBean. The ejbHome<METHOD>
methods are implemented by the bean developer.

Order uses three home methods: OrderLocalHome.adjustDiscount, Vendor-
PartLocalHome.getAvgPrice, and VendorPartLocalHome.getTotalPriceP-
erVendor. Home methods operate on all instances of a bean rather than on any
particular bean instance. That is, home methods cannot access the container-
managed fields and relationships of a bean instance on which the method is
called.

For example, OrderLocalHome.adjustDiscount is used to increase or decrease
the discount on all orders.

Cascade Deletes in Order
Entity beans that use container-managed relationships often have dependencies
on the existence of the other bean in the relationship. For example, a line item is
part of an order, and if the order is deleted, then the line item should also be
deleted. This is called a cascade delete relationship.

In Order, there are two cascade delete dependencies in the bean relationships. If
the OrderBean to which a LineItemBean is related is deleted, then the
LineItemBean should also be deleted. If the VendorBean to which a Vendor-
PartBean is related is deleted, then the VendorPartBean should also be deleted.

BLOB and CLOB Database Types in Order
The PART_DETAIL table in the database has a column, DRAWING, of type BLOB.
BLOB stands for binary large objects, which are used for storing binary data such
as an image. The DRAWING column is mapped to the container-managed field
PartBean. drawing of type java.io.Serializable.

PART_DETAIL also has a column, SPECIFICATION, of type CLOB. CLOB stands for
character large objects, which are used to store string data too large to be stored
in a VARCHAR column. SPECIFICATION is mapped to the container-managed field
PartBean.specification of type java.lang.String.

Note: You cannot use a BLOB or CLOB column in the WHERE clause of a finder or
selector EJB QL query.

252 CONTAINER-MANAGED PERSISTENCE EXAMPLES
Building and Running the Order Example
In order to run the OrderClient example, you have to build and deploy the
Order EJB module and create the database tables.

Building and Deploying the EJB Module
You can build and deploy the module in one action.

1. In the Runtime window, expand the Servers node, right-click the node for
the Sun Java System Application Server, and choose Start/Stop Server. If
the server is stopped, click Start Server in the dialog box.

2. In the Projects window, right-click the Order project and choose Deploy
Project.

The IDE does all of the following:

1. Compiles the EJB module’s sources and builds the EJB JAR file. You can
view the build output in the project’s build and dist directories in the
Files window.

2. Registers the JDBC connection pool and datasource on the server.
3. Undeploys the module if it is already deployed to the server.
4. Deploys the module to the server.

Running the OrderClient Example
1. In the IDE, choose Tools→PointBase Database→Start Local PointBase

Database.
2. Create the database tables by running the create.sql script.

a. Make sure that the appsrv.root property in your
<INSTALL>/j2eetutorial14/examples/ file points to the location of
your local Application Server installation.

b. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/order/

c. Type the following command, which runs the create.sql script:
asant -buildfile create-db.xml

3. Choose File→Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/j2eetutorial14/examples/ejb/order/, select the Order-
Client directory, and choose Open Project.

BUILDING AND RUNNING THE ORDER EXAMPLE 253
4. The project needs to know the location of some JAR files on its classpath
and the Enroller project. Right-click the EnrollerClient project and choose
Resolve Reference Problems. Select the “Order” project could not be
found message and click Resolve. In the file chooser, select either the
completed Enroller project in
<INSTALL>/j2eetutorial14/examples/ejb/enroller/ or the project
you created and click OK.

5. Select the “appserv-rt.jar” file/folder could not be found mes-
sage and click Resolve. Navigate to the lib directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j2ee.jar. Click Close.

6. Right-click the OrderClient project and choose Run Project. The client
should display the following:
Cost of Bill of Material for PN SDFG-ERTY-BN Rev: 7: $241.86
Cost of Order 1111: $664.68
Cost of Order 4312: $2,011.44

Adding 5% discount
Cost of Order 1111: $627.75
Cost of Order 4312: $1,910.87

Removing 7% discount
Cost of Order 1111: $679.45
Cost of Order 4312: $2,011.44

Average price of all parts: $117.55

Total price of parts for Vendor 100: $501.06

Ordered list of vendors for order 1111
200 Gadget, Inc. Mrs. Smith
100 WidgetCorp Mr. Jones

Found 6 line items

Removing Order
Found 3 line items

Found 1 out of 2 vendors with 'I' in the name:
Gadget, Inc.

254 CONTAINER-MANAGED PERSISTENCE EXAMPLES

9

255
A Message-Driven Bean
Example

BECAUSE message-driven beans are based on the Java Message Service
(JMS) technology, to understand the example in this chapter you should be
familiar with basic JMS concepts such as queues and messages.

This chapter describes the source code of a simple message-driven bean exam-
ple. Before proceeding, you should read the basic conceptual information in the
section What Is a Message-Driven Bean? (page 116).

Example Application Overview
The SimpleMessage application has the following components:

• SimpleMessageClient: An application client that sends several messages to a
queue

• SimpleMessageMDB: A message-driven bean that asynchronously receives
and processes the messages that are sent to the queue

Figure 9–1 illustrates the structure of this application. The application client
sends messages to the queue, and the JMS provider (in this case, the Application
Server) delivers the messages to the instances of the message-driven bean, which
then processes the messages.

256 A MESSAGE-DRIVEN BEAN EXAMPLE
Figure 9–1 The SimpleMessageClient Application

The source code for this application is in the <INSTALL>/j2eetutorial14/examples/ejb/
simplemessage/ directory.

The SimpleMessageClient Application
The SimpleMessageClient application is a simple Java application that sends mes-
sages to a queue. The application locates the connection factory and queue and
then generates some messages to send to the queue.

Creating the SimpleMessageClient
application
In this example, using the IDE you create the simple Java client application.

1. Choose File→New Project (Ctrl-Shift-N) from the main menu.
2. Select General in the Categories pane and Java Application in the Projects

pane and click Next.
3. Enter SimpleMessageClient as the Project Name, specify the project location,

and click Finish.
The IDE creates a new project called SimpleMessageClient and the main class
opens in the Source Editor. In the Projects window, notice that the main method
is located in the Source Packages node in the simplemessageclient package. To run

CREATING THE SIMPLEMESSAGECLIENT APPLICATION 257
the SimpleMessageClient project you need to add some libraries to the project
classpath. You can add the libraries in the Projects window

1. Expand the SimpleMessageClient node, right-click the Libraries node and
choose Add JAR/Folder from the contextual menu.

2. In the Add JAR/Folder dialog box, locate and add the following JAR files:
• j2ee.jar

• appserv-rt.jar

• appserv-admin.jar

• imqjmsra.jar

With the exception of the imqjmsra.jar file, the JAR files can be found in the
lib folder of the local installation of the SJS Application Server. To add the
imqjmsra.jar file to the classpath, you first need to extract the JAR file from
the imqjmsra.rar file, which is located in the imq/lib folder of the local SJS
Application Server installation.

3. Click OK.

After adding the libraries to the classpath, add the following field declarations to
the main method in the Source Editor:

Context jndiContext = null;
ConnectionFactory connectionFactory = null;
Connection connection = null;
Session session = null;
Destination destination = null;
MessageProducer messageProducer = null;
TextMessage message = null;
final int NUM_MSGS = 3;

Press Alt-Shift-F to add and fix any import statements. The import statements
should be as follows:

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

258 A MESSAGE-DRIVEN BEAN EXAMPLE
Add the following code to create the new context:

try {
jndiContext = new InitialContext();

} catch (NamingException e) {
System.out.println("Could not create JNDI " + "context: " +

e.toString());
System.exit(1);

}

Add the following code for locating the connection factory and queue:

try {
connectionFactory =

(ConnectionFactory) jndiContext.lookup(
"jms/SimpleMessageDestinationFactory");

destination =
(Queue) jndiContext.lookup("jms/SimpleMessageBean");

} catch (NamingException e) {
System.out.println("JNDI lookup failed: " + e.toString());
System.exit(1);

}

Add the following code to create the queue connection, session, and sender:

try {
connection = connectionFactory.createConnection();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
messageProducer = session.createProducer(destination);

Finally, add the following code to send several messages to the queue and print a
message to the server log:

message = session.createTextMessage();

for (int i = 0; i < NUM_MSGS; i++) {
message.setText("This is message " + (i + 1));
System.out.println("Sending message: " +

message.getText());
messageProducer.send(message);

}

System.out.println("To see if the bean received the messages,");
System.out.println(

" check <install_dir>/domains/domain1/logs/server.log.");
} catch (JMSException e) {

System.out.println("Exception occurred: " + e.toString());

THE MESSAGE-DRIVEN BEAN 259
} finally {
if (connection != null) {

try {
connection.close();

} catch (JMSException e) {
}

}
System.exit(0);

}

Now that you have created the SimpleMessageClient application, you create the
message-driven bean that listens for the messages the client sent to the queue.

The Message-Driven Bean
When creating the message-driven bean, you first create an EJB module which
contains and manages the context for the bean. You add the message-driven bean
to the EJB the module.

The message-driven bean example requires the following:

• A JMS connection factory resource
• A JMS destination resource
• A physical destination to which the destination resource refers

When you create a message-driven bean, the IDE generates the connection fac-
tory and destination resources and adds them to the module. The physical desti-
nation is generated upon deployment.

Creating the SimpleMessage EJB Module
To create the EJB module for the message-driven bean, perform the following
steps:

1. Create a new project by choosing File→New Project.
2. In the New Project wizard, choose Enterprise in the Categories pane and

EJB Module in the Projects pane and click Next.
3. Enter SimpleMessage for the Project Name and specify a Project Location.
4. Ensure that the server instance of the SJS Application Server is selected in

the Server combo box and click Finish.

260 A MESSAGE-DRIVEN BEAN EXAMPLE
The SimpleMessage module appears in the Projects window of the IDE. The
next step is to add a message-driven bean to the module.

Creating the SimpleMessageMDB
The code for the SimpleMessageBean class illustrates the requirements of a mes-
sage-driven bean class:

• It must implement the MessageDrivenBean and MessageListener interfaces.
• The class must be defined as public.
• The class cannot be defined as abstract or final.
• It must implement one onMessage method.
• It must implement one ejbCreate method and one ejbRemove method.
• It must contain a public constructor with no arguments.
• It must not define the finalize method.

Unlike session and entity beans, message-driven beans do not have the remote or
local interfaces that define client access. Client components do not locate mes-
sage-driven beans and invoke methods on them. Although message-driven beans
do not have business methods, they may contain helper methods that are invoked
internally by the onMessage method.

To create the message-driven bean, perform the following steps:

1. Right-click the SimpleMessage node and choose New→Message-Driven
Bean.

2. Enter SimpleMessage as the Ejb Name.
3. Enter beans as the Package name.
4. Select queue as the Destination Type and click Finish.

The IDE creates the SimpleMessage enterprise bean and opens the SimpleMessage-
Bean class in the Source Editor.

For this example, the destination type is being specified as queue. The Destina-
tion Type can be either javax.jms.Queue or javax.jms.Topic. A queue uses the point-to-
point messaging domain and can have at most one consumer. A topic uses the
publish/subscribe messaging domain; it can have zero, one, or many consumers.

THE EJBCREATE AND EJBREMOVE METHODS 261
When you create the message-driven bean, the IDE generates the following
methods in the SimpleMessageBean class:

• ejbCreate
• ejbRemove
• onMessage

These methods are hidden in the code fold in the Source Editor. Expand the code
fold to see the methods generated by the IDE and to add the logic to the methods.

The ejbCreate and ejbRemove Methods
The signatures of these methods have the following requirements:

• The access control modifier must be public.
• The return type must be void.
• The modifier cannot be static or final.
• The throws clause must not define any application exceptions.
• The method has no arguments.

In SimpleMessageBean, the ejbCreate and ejbRemove methods are empty. These meth-
ods are required, but for this example the methods are not used and are emtpy.

The onMessage Method
When the queue receives a message, the EJB container invokes the onMessage
method of the message-driven bean.

The onMessage method is called by the bean’s container when a message has
arrived for the bean to service. This method contains the business logic that han-
dles the processing of the message. It is the message-driven bean’s responsibility
to parse the message and perform the necessary business logic.

The onMessage method has a single argument: the incoming message.

262 A MESSAGE-DRIVEN BEAN EXAMPLE
The message-driven bean class defines one onMessage method, whose signature
must follow these rules:

• The method must be declared as public and must not be declared as final or
static.

• The return type must be void.
• The method must have a single argument of type javax.jms.Message.
• The throws clause must not define any application exceptions.
• The onMessage method must be invoked in the scope of a transaction that is

determined by the transaction attribute specified in the deployment
descriptor.

In the SimpleMessageBean class, the onMessage method casts the incoming message
to a TextMessage and displays the text. In the Source Editor, edit the onMessage
method as follows:

public void onMessage(javax.jms.Message aMessage) {
TextMessage msg = null;

try {
if (aMessage instanceof TextMessage) {

msg = (TextMessage) aMessage;
logger.info("MESSAGE BEAN: Message received: " +

msg.getText());
} else {

logger.warning("Message of wrong type: " +
aMessage.getClass().getName());

}
} catch (JMSException e) {

e.printStackTrace();
mdc.setRollbackOnly();

} catch (Throwable te) {
te.printStackTrace();

}
}

In the Source Editor, add the following code to the public class declaration to
print information to the server log:

static final Logger logger = Logger.getLogger("SimpleMessageBean");

BUILDING AND DEPLOYING SIMPLEMESSAGE MODULE 263
Now import any necessary libraries for the message-driven bean. For the Sim-
pleMessage example, add the following import statements:

import javax.jms.JMSException;
import javax.jms.TextMessage;
import java.util.logging.Logger;

Import statements can be added manually, or the IDE can check and fix any
import statements in the class. To automatically add and fix the import state-
ments, place the insertion point anywhere in the body of the class in the Source
Editor and press Alt-Shift-F to Fix Imports. The IDE removes any unused import
statements and adds any missing important statements.

You are prompted by a dialog box when the IDE cannot locate a library or there
is more than one possible library. When there is more than one possible matching
library, select the correct library from the combo box.

Building and Deploying SimpleMessage
Module

Now that you have finished creating the EJB module, the next step is to build
and deploy the application to the SJS Application Server from within the IDE.
The source files for the SimpleMessage example are available in the <INSTALL>/
j2eetutorial14/examples/ejb/simplemessage directory.

Building and Deploying the Application
After assembling and adding the message-driven bean to the EJB module, you
can build and deploy the application.

1. In the Projects window, right-click the SimpleMessage node and select
Build Main Project (F11) from the contextual menu.

2. Look at the Output window to ensure the application was built success-
fully.

3. In the Projects window, right-click the SimpleMessage node and select
Deploy Project from the contextual menu.

264 A MESSAGE-DRIVEN BEAN EXAMPLE
When you deploy the SimpleMessage example, the IDE registers the JMS
resources with the SJS Application Server. To see the registered resources,
expand the Servers node in the Runtime window of the IDE and expand the JMS
Resources node under the SJS Application Server instance. The IDE also regis-
ters the related connector resources. The connector resources are visible in the
Connectors node in the Runtime window.

The deployed SimpleMessage application is visible in the Runtime window of
the IDE. To see the deployed application, expand the EJB Modules node in the
Applications node of the server instance. You can undeploy and disable the
application in the Runtime window.

Running the Client
After deploying the SimpleMessage application, run the SimpleMessageClient
to send a message to the SimpleMessage application.

1. In the Projects window, right-click the SimpleMessageClient node and
select Run Project from the contextual menu.

The following lines are displayed in the Output window of the IDE:

Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3
To see if the bean received the messages,
 check <install_dir>/domains/domain1/logs/server.log.

In the server log file, the following lines should be displayed, wrapped in log-
ging information:

MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

Undeploy the application after you finish running the client.

Removing the Administered Objects
After you run the example, you can delete the connection factory and queue in
the Runtime window of the IDE.

1. Expand the SJS Application Server instance node under Servers in the
Runtime window.

REMOVING THE ADMINISTERED OBJECTS 265
2. Expand the JMS Resources node and the Connection Factories and Desti-
nation Resources nodes.

3. Right-click the resources and select Delete Resource from the contextual
menu.

When you delete the JMS resources, the related connector resources are also
deleted. The resources are registered again when you redeploy the SimpleMes-
sage application.

266 A MESSAGE-DRIVEN BEAN EXAMPLE

Glossary
267
abstract schema
The part of an entity bean’s deployment descriptor that defines the bean’s
persistent fields and relationships.

abstract schema name
A logical name that is referenced in EJB QL queries.

access control
The methods by which interactions with resources are limited to collections
of users or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints.

ACID
The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

activation
The process of transferring an enterprise bean from secondary storage to
memory. (See passivation.)

anonymous access
Accessing a resource without authentication.

applet
A J2EE component that typically executes in a web browser but can execute
in a variety of other applications or devices that support the applet program-
ming model.

applet container
A container that includes support for the applet programming model.

application assembler
A person who combines J2EE components and modules into deployable
application units.

application client
A first-tier J2EE client component that executes in its own Java virtual
machine. Application clients have access to some J2EE platform APIs.

application client container
A container that supports application client components.

268 GLOSSARY
application client module
A software unit that consists of one or more classes and an application client
deployment descriptor.

application component provider
A vendor that provides the Java classes that implement components’ meth-
ods, JSP page definitions, and any required deployment descriptors.

application configuration resource file
An XML file used to configure resources for a JavaServer Faces application,
to define navigation rules for the application, and to register converters, val-
idators, listeners, renderers, and components with the application.

archiving
The process of saving the state of an object and restoring it.

attribute
A qualifier on an XML tag that provides additional information.

authentication
The process that verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resources in
a system. The Java servlet specification requires three types of authentica-
tion—basic, form-based, and mutual—and supports digest authentication.

authorization
The process by which access to a method or resource is determined. Authori-
zation depends on the determination of whether the principal associated with
a request through authentication is in a given security role. A security role is
a logical grouping of users defined by the person who assembles the applica-
tion. A deployer maps security roles to security identities. Security identities
may be principals or groups in the operational environment.

authorization constraint
An authorization rule that determines who is permitted to access a web
resource collection.

B2B
Business-to-business.

backing bean
A JavaBeans component that corresponds to a JSP page that includes Jav-
aServer Faces components. The backing bean defines properties for the
components on the page and methods that perform processing for the com-
ponent. This processing includes event handling, validation, and processing
associated with navigation.

GLOSSARY 269
basic authentication
An authentication mechanism in which a web server authenticates an entity
via a user name and password obtained using the web application’s built-in
authentication mechanism.

bean-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and a resource manager is managed by the entity bean.

bean-managed transaction
A transaction whose boundaries are defined by an enterprise bean.

binary entity
See unparsed entity.

binding (XML)
Generating the code needed to process a well-defined portion of XML data.

binding (JavaServer Faces technology)
Wiring UI components to back-end data sources such as backing bean prop-
erties.

build file
The XML file that contains one or more asant targets. A target is a set of tasks
you want to be executed. When starting asant, you can select which targets
you want to have executed. When no target is given, the project’s default tar-
get is executed.

business logic
The code that implements the functionality of an application. In the Enter-
prise JavaBeans architecture, this logic is implemented by the methods of an
enterprise bean.

business method
A method of an enterprise bean that implements the business logic or rules
of an application.

callback methods
Component methods called by the container to notify the component of
important events in its life cycle.

caller
Same as caller principal.

caller principal
The principal that identifies the invoker of the enterprise bean method.

cascade delete
A deletion that triggers another deletion. A cascade delete can be specified
for an entity bean that has container-managed persistence.

270 GLOSSARY
CDATA
A predefined XML tag for character data that means “don’t interpret these
characters,” as opposed to parsed character data (PCDATA), in which the nor-
mal rules of XML syntax apply. CDATA sections are typically used to show
examples of XML syntax.

certificate authority
A trusted organization that issues public key certificates and provides identi-
fication to the bearer.

client-certificate authentication
An authentication mechanism that uses HTTP over SSL, in which the server
and, optionally, the client authenticate each other with a public key certifi-
cate that conforms to a standard that is defined by X.509 Public Key Infra-
structure.

comment
In an XML document, text that is ignored unless the parser is specifically
told to recognize it.

commit
The point in a transaction when all updates to any resources involved in the
transaction are made permanent.

component
See J2EE component.

component (JavaServer Faces technology)
See JavaServer Faces UI component.

component contract
The contract between a J2EE component and its container. The contract
includes life-cycle management of the component, a context interface that
the instance uses to obtain various information and services from its con-
tainer, and a list of services that every container must provide for its compo-
nents.

component-managed sign-on
A mechanism whereby security information needed for signing on to a
resource is provided by an application component.

connection
See resource manager connection.

connection factory
See resource manager connection factory.

GLOSSARY 271
connector
A standard extension mechanism for containers that provides connectivity to
enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for system-level con-
tracts defined in the Connector architecture.

Connector architecture
An architecture for integration of J2EE products with enterprise information
systems. There are two parts to this architecture: a resource adapter provided
by an enterprise information system vendor and the J2EE product that allows
this resource adapter to plug in. This architecture defines a set of contracts
that a resource adapter must support to plug in to a J2EE product—for exam-
ple, transactions, security, and resource management.

container
An entity that provides life-cycle management, security, deployment, and
runtime services to J2EE components. Each type of container (EJB, web,
JSP, servlet, applet, and application client) also provides component-specific
services.

container-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and a resource manager is managed by the entity bean’s container.

container-managed sign-on
The mechanism whereby security information needed for signing on to a
resource is supplied by the container.

container-managed transaction
A transaction whose boundaries are defined by an EJB container. An entity
bean must use container-managed transactions.

content
In an XML document, the part that occurs after the prolog, including the root
element and everything it contains.

context attribute
An object bound into the context associated with a servlet.

context root
A name that gets mapped to the document root of a web application.

conversational state
The field values of a session bean plus the transitive closure of the objects
reachable from the bean’s fields. The transitive closure of a bean is defined

272 GLOSSARY
in terms of the serialization protocol for the Java programming language,
that is, the fields that would be stored by serializing the bean instance.

CORBA
Common Object Request Broker Architecture. A language-independent dis-
tributed object model specified by the OMG.

create method
A method defined in the home interface and invoked by a client to create an
enterprise bean.

credentials
The information describing the security attributes of a principal.

CSS
Cascading style sheet. A stylesheet used with HTML and XML documents
to add a style to all elements marked with a particular tag, for the direction of
browsers or other presentation mechanisms.

CTS
Compatibility test suite. A suite of compatibility tests for verifying that a
J2EE product complies with the J2EE platform specification.

data
The contents of an element in an XML stream, generally used when the ele-
ment does not contain any subelements. When it does, the term content is
generally used. When the only text in an XML structure is contained in sim-
ple elements and when elements that have subelements have little or no data
mixed in, then that structure is often thought of as XML data, as opposed to
an XML document.

DDP
Document-driven programming. The use of XML to define applications.

declaration
The very first thing in an XML document, which declares it as XML. The
minimal declaration is <?xml version="1.0"?>. The declaration is part of the
document prolog.

declarative security
Mechanisms used in an application that are expressed in a declarative syntax
in a deployment descriptor.

delegation
An act whereby one principal authorizes another principal to use its identity
or privileges with some restrictions.

GLOSSARY 273
deployer
A person who installs J2EE modules and applications into an operational
environment.

deployment
The process whereby software is installed into an operational environment.

deployment descriptor
An XML file provided with each module and J2EE application that
describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container
options and describes specific configuration requirements that a deployer
must resolve.

destination
A JMS administered object that encapsulates the identity of a JMS queue or
topic. See point-to-point messaging system, publish/subscribe messaging
system.

digest authentication
An authentication mechanism in which a web application authenticates itself
to a web server by sending the server a message digest along with its HTTP
request message. The digest is computed by employing a one-way hash
algorithm to a concatenation of the HTTP request message and the client’s
password. The digest is typically much smaller than the HTTP request and
doesn’t contain the password.

distributed application
An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typi-
cal distributed applications are two-tier (client-server), three-tier (client-
middleware-server), and multitier (client-multiple middleware-multiple
servers).

document
In general, an XML structure in which one or more elements contains text
intermixed with subelements. See also data.

Document Object Model
An API for accessing and manipulating XML documents as tree structures.
DOM provides platform-neutral, language-neutral interfaces that enables
programs and scripts to dynamically access and modify content and structure
in XML documents.

document root
The top-level directory of a WAR. The document root is where JSP pages,
client-side classes and archives, and static web resources are stored.

274 GLOSSARY
DOM
See Document Object Model.

DTD
Document type definition. An optional part of the XML document prolog, as
specified by the XML standard. The DTD specifies constraints on the valid
tags and tag sequences that can be in the document. The DTD has a number
of shortcomings, however, and this has led to various schema proposals. For
example, the DTD entry <!ELEMENT username (#PCDATA)> says that the XML
element called username contains parsed character data—that is, text alone,
with no other structural elements under it. The DTD includes both the local
subset, defined in the current file, and the external subset, which consists of
the definitions contained in external DTD files that are referenced in the
local subset using a parameter entity.

durable subscription
In a JMS publish/subscribe messaging system, a subscription that continues
to exist whether or not there is a current active subscriber object. If there is
no active subscriber, the JMS provider retains the subscription’s messages
until they are received by the subscription or until they expire.

EAR file
Enterprise Archive file. A JAR archive that contains a J2EE application.

ebXML
Electronic Business XML. A group of specifications designed to enable
enterprises to conduct business through the exchange of XML-based mes-
sages. It is sponsored by OASIS and the United Nations Centre for the Facil-
itation of Procedures and Practices in Administration, Commerce and
Transport (U.N./CEFACT).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for enterprise beans
that includes security, concurrency, life-cycle management, transactions,
deployment, naming, and other services. An EJB container is provided by an
EJB or J2EE server.

EJB container provider
A vendor that supplies an EJB container.

GLOSSARY 275
EJB context
An object that allows an enterprise bean to invoke services provided by the
container and to obtain the information about the caller of a client-invoked
method.

EJB home object
An object that provides the life-cycle operations (create, remove, find) for an
enterprise bean. The class for the EJB home object is generated by the con-
tainer’s deployment tools. The EJB home object implements the enterprise
bean’s home interface. The client references an EJB home object to perform
life-cycle operations on an EJB object. The client uses JNDI to locate an
EJB home object.

EJB JAR file
A JAR archive that contains an EJB module.

EJB module
A deployable unit that consists of one or more enterprise beans and an EJB
deployment descriptor.

EJB object
An object whose class implements the enterprise bean’s remote interface. A
client never references an enterprise bean instance directly; a client always
references an EJB object. The class of an EJB object is generated by a con-
tainer’s deployment tools.

EJB server
Software that provides services to an EJB container. For example, an EJB
container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across all the participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by
an EJB server from the same vendor, so it does not specify the contract
between these two entities. An EJB server can host one or more EJB con-
tainers.

EJB server provider
A vendor that supplies an EJB server.

element
A unit of XML data, delimited by tags. An XML element can enclose other
elements.

empty tag
A tag that does not enclose any content.

276 GLOSSARY
enterprise bean
A J2EE component that implements a business task or business entity and is
hosted by an EJB container; either an entity bean, a session bean, or a mes-
sage-driven bean.

enterprise bean provider
An application developer who produces enterprise bean classes, remote and
home interfaces, and deployment descriptor files, and packages them in an
EJB JAR file.

enterprise information system
The applications that constitute an enterprise’s existing system for handling
companywide information. These applications provide an information infra-
structure for an enterprise. An enterprise information system offers a well-
defined set of services to its clients. These services are exposed to clients as
local or remote interfaces or both. Examples of enterprise information sys-
tems include enterprise resource planning systems, mainframe transaction
processing systems, and legacy database systems.

enterprise information system resource
An entity that provides enterprise information system-specific functionality
to its clients. Examples are a record or set of records in a database system, a
business object in an enterprise resource planning system, and a transaction
program in a transaction processing system.

Enterprise JavaBeans (EJB)
A component architecture for the development and deployment of object-
oriented, distributed, enterprise-level applications. Applications written
using the Enterprise JavaBeans architecture are scalable, transactional, and
secure.

Enterprise JavaBeans Query Language (EJB QL)
Defines the queries for the finder and select methods of an entity bean hav-
ing container-managed persistence. A subset of SQL92, EJB QL has exten-
sions that allow navigation over the relationships defined in an entity bean’s
abstract schema.

entity
A distinct, individual item that can be included in an XML document by ref-
erencing it. Such an entity reference can name an entity as small as a charac-
ter (for example, <, which references the less-than symbol or left angle
bracket, <). An entity reference can also reference an entire document, an
external entity, or a collection of DTD definitions.

GLOSSARY 277
entity bean
An enterprise bean that represents persistent data maintained in a database.
An entity bean can manage its own persistence or can delegate this function
to its container. An entity bean is identified by a primary key. If the container
in which an entity bean is hosted crashes, the entity bean, its primary key,
and any remote references survive the crash.

entity reference
A reference to an entity that is substituted for the reference when the XML
document is parsed. It can reference a predefined entity such as < or refer-
ence one that is defined in the DTD. In the XML data, the reference could be
to an entity that is defined in the local subset of the DTD or to an external
XML file (an external entity). The DTD can also carve out a segment of
DTD specifications and give it a name so that it can be reused (included) at
multiple points in the DTD by defining a parameter entity.

error
A SAX parsing error is generally a validation error; in other words, it occurs
when an XML document is not valid, although it can also occur if the decla-
ration specifies an XML version that the parser cannot handle. See also fatal
error, warning.

Extensible Markup Language
See XML.

external entity
An entity that exists as an external XML file, which is included in the XML
document using an entity reference.

external subset
That part of a DTD that is defined by references to external DTD files.

fatal error
A fatal error occurs in the SAX parser when a document is not well formed
or otherwise cannot be processed. See also error, warning.

filter
An object that can transform the header or content (or both) of a request or
response. Filters differ from web components in that they usually do not
themselves create responses but rather modify or adapt the requests for a
resource, and modify or adapt responses from a resource. A filter should not
have any dependencies on a web resource for which it is acting as a filter so
that it can be composable with more than one type of web resource.

filter chain
A concatenation of XSLT transformations in which the output of one trans-
formation becomes the input of the next.

278 GLOSSARY
finder method
A method defined in the home interface and invoked by a client to locate an
entity bean.

form-based authentication
An authentication mechanism in which a web container provides an applica-
tion-specific form for logging in. This form of authentication uses Base64
encoding and can expose user names and passwords unless all connections
are over SSL.

general entity
An entity that is referenced as part of an XML document’s content, as dis-
tinct from a parameter entity, which is referenced in the DTD. A general
entity can be a parsed entity or an unparsed entity.

group
An authenticated set of users classified by common traits such as job title or
customer profile. Groups are also associated with a set of roles, and every
user that is a member of a group inherits all the roles assigned to that group.

handle
An object that identifies an enterprise bean. A client can serialize the handle
and then later deserialize it to obtain a reference to the enterprise bean.

home handle
An object that can be used to obtain a reference to the home interface. A
home handle can be serialized and written to stable storage and deserialized
to obtain the reference.

home interface
One of two interfaces for an enterprise bean. The home interface defines
zero or more methods for managing an enterprise bean. The home interface
of a session bean defines create and remove methods, whereas the home inter-
face of an entity bean defines create, finder, and remove methods.

HTML
Hypertext Markup Language. A markup language for hypertext documents
on the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other objects with URLs, and basic text
formatting.

HTTP
Hypertext Transfer Protocol. The Internet protocol used to retrieve hypertext
objects from remote hosts. HTTP messages consist of requests from client to
server and responses from server to client.

HTTPS
HTTP layered over the SSL protocol.

GLOSSARY 279
IDL
Interface Definition Language. A language used to define interfaces to
remote CORBA objects. The interfaces are independent of operating sys-
tems and programming languages.

IIOP
Internet Inter-ORB Protocol. A protocol used for communication between
CORBA object request brokers.

impersonation
An act whereby one entity assumes the identity and privileges of another
entity without restrictions and without any indication visible to the recipients
of the impersonator’s calls that delegation has taken place. Impersonation is
a case of simple delegation.

initialization parameter
A parameter that initializes the context associated with a servlet.

ISO 3166
The international standard for country codes maintained by the International
Organization for Standardization (ISO).

ISV
Independent software vendor.

J2EE
See Java 2 Platform, Enterprise Edition.

J2EE application
Any deployable unit of J2EE functionality. This can be a single J2EE mod-
ule or a group of modules packaged into an EAR file along with a J2EE
application deployment descriptor. J2EE applications are typically engi-
neered to be distributed across multiple computing tiers.

J2EE component
A self-contained functional software unit supported by a container and con-
figurable at deployment time. The J2EE specification defines the following
J2EE components:
• Application clients and applets are components that run on the client.
• Java servlet and JavaServer Pages (JSP) technology components are web

components that run on the server.
• Enterprise JavaBeans (EJB) components (enterprise beans) are business

components that run on the server.
J2EE components are written in the Java programming language and are
compiled in the same way as any program in the language. The difference
between J2EE components and “standard” Java classes is that J2EE compo-

280 GLOSSARY
nents are assembled into a J2EE application, verified to be well formed and
in compliance with the J2EE specification, and deployed to production,
where they are run and managed by the J2EE server or client container.

J2EE module
A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type. There are four
types of modules: EJB, web, application client, and resource adapter. Mod-
ules can be deployed as stand-alone units or can be assembled into a J2EE
application.

J2EE product
An implementation that conforms to the J2EE platform specification.

J2EE product provider
A vendor that supplies a J2EE product.

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB or web
containers or both.

J2ME
See Java 2 Platform, Micro Edition.

J2SE
See Java 2 Platform, Standard Edition.

JAR
Java archive. A platform-independent file format that permits many files to
be aggregated into one file.

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications. The
J2EE platform consists of a set of services, application programming inter-
faces (APIs), and protocols that provide the functionality for developing
multitiered, web-based applications.

Java 2 Platform, Micro Edition (J2ME)
A highly optimized Java runtime environment targeting a wide range of con-
sumer products, including pagers, cellular phones, screen phones, digital set-
top boxes, and car navigation systems.

Java 2 Platform, Standard Edition (J2SE)
The core Java technology platform.

Java API for XML Processing (JAXP)
An API for processing XML documents. JAXP leverages the parser stan-
dards SAX and DOM so that you can choose to parse your data as a stream
of events or to build a tree-structured representation of it. JAXP supports the

GLOSSARY 281
XSLT standard, giving you control over the presentation of the data and
enabling you to convert the data to other XML documents or to other for-
mats, such as HTML. JAXP provides namespace support, allowing you to
work with schema that might otherwise have naming conflicts.

Java API for XML Registries (JAXR)
An API for accessing various kinds of XML registries.

Java API for XML-based RPC (JAX-RPC)
An API for building web services and clients that use remote procedure calls
and XML.

Java IDL
A technology that provides CORBA interoperability and connectivity capa-
bilities for the J2EE platform. These capabilities enable J2EE applications to
invoke operations on remote network services using the Object Management
Group IDL and IIOP.

Java Message Service (JMS)
An API for invoking operations on enterprise messaging systems.

Java Naming and Directory Interface (JNDI)
An API that provides naming and directory functionality.

Java Secure Socket Extension (JSSE)
A set of packages that enable secure Internet communications.

Java Transaction API (JTA)
An API that allows applications and J2EE servers to access transactions.

Java Transaction Service (JTS)
Specifies the implementation of a transaction manager that supports JTA and
implements the Java mapping of the Object Management Group Object
Transaction Service 1.1 specification at the level below the API.

JavaBeans component
A Java class that can be manipulated by tools and composed into applica-
tions. A JavaBeans component must adhere to certain property and event
interface conventions.

JavaMail
An API for sending and receiving email.

JavaServer Faces
A framework for building server-side user interfaces for web applications
written in the Java programming language.

JavaServer Faces conversion model
A mechanism for converting between string-based markup generated by Jav-
aServer Faces UI components and server-side Java objects.

282 GLOSSARY
JavaServer Faces event and listener model
A mechanism for determining how events emitted by JavaServer Faces UI
components are handled. This model is based on the JavaBeans component
event and listener model.

JavaServer Faces expression language
A simple expression language used by a JavaServer Faces UI component tag
attributes to bind the associated component to a bean property or to bind the
associated component’s value to a method or an external data source, such as
a bean property. Unlike JSP EL expressions, JavaServer Faces EL expres-
sions are evaluated by the JavaServer Faces implementation rather than by
the web container.

JavaServer Faces navigation model
A mechanism for defining the sequence in which pages in a JavaServer
Faces application are displayed.

JavaServer Faces UI component
A user interface control that outputs data to a client or allows a user to input
data to a JavaServer Faces application.

JavaServer Faces UI component class
A JavaServer Faces class that defines the behavior and properties of a Jav-
aServer Faces UI component.

JavaServer Faces validation model
A mechanism for validating the data a user inputs to a JavaServer Faces UI
component.

JavaServer Pages (JSP)
An extensible web technology that uses static data, JSP elements, and
server-side Java objects to generate dynamic content for a client. Typically
the static data is HTML or XML elements, and in many cases the client is a
web browser.

JavaServer Pages Standard Tag Library (JSTL)
A tag library that encapsulates core functionality common to many JSP
applications. JSTL has support for common, structural tasks such as iteration
and conditionals, tags for manipulating XML documents, internationaliza-
tion and locale-specific formatting tags, SQL tags, and functions.

JAXR client
A client program that uses the JAXR API to access a business registry via a
JAXR provider.

GLOSSARY 283
JAXR provider
An implementation of the JAXR API that provides access to a specific regis-
try provider or to a class of registry providers that are based on a common
specification.

JDBC
An API for database-independent connectivity between the J2EE platform
and a wide range of data sources.

JMS
See Java Message Service.

JMS administered object
A preconfigured JMS object (a resource manager connection factory or a
destination) created by an administrator for the use of JMS clients and
placed in a JNDI namespace.

JMS application
One or more JMS clients that exchange messages.

JMS client
A Java language program that sends or receives messages.

JMS provider
A messaging system that implements the Java Message Service as well as
other administrative and control functionality needed in a full-featured mes-
saging product.

JMS session
A single-threaded context for sending and receiving JMS messages. A JMS
session can be nontransacted, locally transacted, or participating in a distrib-
uted transaction.

JNDI
See Java Naming and Directory Interface.

JSP
See JavaServer Pages.

JSP action
A JSP element that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for
elements, with a start tag, a body, and an end tag; if the body is empty it can
also use the empty tag syntax. The tag must use a prefix. There are standard
and custom actions.

JSP container
A container that provides the same services as a servlet container and an
engine that interprets and processes JSP pages into a servlet.

284 GLOSSARY
JSP container, distributed
A JSP container that can run a web application that is tagged as distributable
and is spread across multiple Java virtual machines that might be running on
different hosts.

JSP custom action
A user-defined action described in a portable manner by a tag library
descriptor and imported into a JSP page by a taglib directive. Custom actions
are used to encapsulate recurring tasks in writing JSP pages.

JSP custom tag
A tag that references a JSP custom action.

JSP declaration
A JSP scripting element that declares methods, variables, or both in a JSP
page.

JSP directive
A JSP element that gives an instruction to the JSP container and is inter-
preted at translation time.

JSP document
A JSP page written in XML syntax and subject to the constraints of XML
documents.

JSP element
A portion of a JSP page that is recognized by a JSP translator. An element
can be a directive, an action, or a scripting element.

JSP expression
A scripting element that contains a valid scripting language expression that
is evaluated, converted to a String, and placed into the implicit out object.

JSP expression language
A language used to write expressions that access the properties of JavaBeans
components. EL expressions can be used in static text and in any standard or
custom tag attribute that can accept an expression.

JSP page
A text-based document containing static text and JSP elements that describes
how to process a request to create a response. A JSP page is translated into
and handles requests as a servlet.

JSP scripting element
A JSP declaration, scriptlet, or expression whose syntax is defined by the
JSP specification and whose content is written according to the scripting lan-
guage used in the JSP page. The JSP specification describes the syntax and
semantics for the case where the language page attribute is "java".

GLOSSARY 285
JSP scriptlet
A JSP scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes
what is a valid scriptlet for the case where the language page attribute is
"java".

JSP standard action
An action that is defined in the JSP specification and is always available to a
JSP page.

JSP tag file
A source file containing a reusable fragment of JSP code that is translated
into a tag handler when a JSP page is translated into a servlet.

JSP tag handler
A Java programming language object that implements the behavior of a cus-
tom tag.

JSP tag library
A collection of custom tags described via a tag library descriptor and Java
classes.

JSTL
See JavaServer Pages Standard Tag Library.

JTA
See Java Transaction API.

JTS
See Java Transaction Service.

keystore
A file containing the keys and certificates used for authentication.

life cycle (J2EE component)
The framework events of a J2EE component’s existence. Each type of com-
ponent has defining events that mark its transition into states in which it has
varying availability for use. For example, a servlet is created and has its init
method called by its container before invocation of its service method by cli-
ents or other servlets that require its functionality. After the call of its init
method, it has the data and readiness for its intended use. The servlet’s destroy
method is called by its container before the ending of its existence so that
processing associated with winding up can be done and resources can be
released. The init and destroy methods in this example are callback methods.
Similar considerations apply to the life cycle of all J2EE component types:
enterprise beans, web components (servlets or JSP pages), applets, and
application clients.

286 GLOSSARY
life cycle (JavaServer Faces)
A set of phases during which a request for a page is received, a UI compo-
nent tree representing the page is processed, and a response is produced.
During the phases of the life cycle:
• The local data of the components is updated with the values contained in

the request parameters.
• Events generated by the components are processed.
• Validators and converters registered on the components are processed.
• The components’ local data is updated to back-end objects.
• The response is rendered to the client while the component state of the

response is saved on the server for future requests.

local subset
That part of the DTD that is defined within the current XML file.

managed bean creation facility
A mechanism for defining the characteristics of JavaBeans components used
in a JavaServer Faces application.

message
In the Java Message Service, an asynchronous request, report, or event that
is created, sent, and consumed by an enterprise application and not by a
human. It contains vital information needed to coordinate enterprise applica-
tions, in the form of precisely formatted data that describes specific business
actions.

message consumer
An object created by a JMS session that is used for receiving messages sent
to a destination.

message-driven bean
An enterprise bean that is an asynchronous message consumer. A message-
driven bean has no state for a specific client, but its instance variables can
contain state across the handling of client messages, including an open data-
base connection and an object reference to an EJB object. A client accesses a
message-driven bean by sending messages to the destination for which the
bean is a message listener.

message producer
An object created by a JMS session that is used for sending messages to a
destination.

mixed-content model
A DTD specification that defines an element as containing a mixture of text
and one more other elements. The specification must start with #PCDATA,

GLOSSARY 287
followed by diverse elements, and must end with the “zero-or-more” asterisk
symbol (*).

method-binding expression
A JavaServer Faces EL expression that refers to a method of a backing bean.
This method performs either event handling, validation, or navigation pro-
cessing for the UI component whose tag uses the method-binding expres-
sion.

method permission
An authorization rule that determines who is permitted to execute one or
more enterprise bean methods.

mutual authentication
An authentication mechanism employed by two parties for the purpose of
proving each other’s identity to one another.

namespace
A standard that lets you specify a unique label for the set of element names
defined by a DTD. A document using that DTD can be included in any other
document without having a conflict between element names. The elements
defined in your DTD are then uniquely identified so that, for example, the
parser can tell when an element <name> should be interpreted according to
your DTD rather than using the definition for an element <name> in a differ-
ent DTD.

naming context
A set of associations between unique, atomic, people-friendly identifiers and
objects.

naming environment
A mechanism that allows a component to be customized without the need to
access or change the component’s source code. A container implements the
component’s naming environment and provides it to the component as a
JNDI naming context. Each component names and accesses its environment
entries using the java:comp/env JNDI context. The environment entries are
declaratively specified in the component’s deployment descriptor.

normalization
The process of removing redundancy by modularizing, as with subroutines,
and of removing superfluous differences by reducing them to a common
denominator. For example, line endings from different systems are normal-
ized by reducing them to a single new line, and multiple whitespace charac-
ters are normalized to one space.

288 GLOSSARY
North American Industry Classification System (NAICS)
A system for classifying business establishments based on the processes they
use to produce goods or services.

notation
A mechanism for defining a data format for a non-XML document refer-
enced as an unparsed entity. This is a holdover from SGML. A newer stan-
dard is to use MIME data types and namespaces to prevent naming conflicts.

OASIS
Organization for the Advancement of Structured Information Standards. A
consortium that drives the development, convergence, and adoption of e-
business standards. Its web site is http://www.oasis-open.org/. The DTD reposi-
tory it sponsors is at http://www.XML.org.

OMG
Object Management Group. A consortium that produces and maintains com-
puter industry specifications for interoperable enterprise applications. Its
web site is http://www.omg.org/.

one-way messaging
A method of transmitting messages without having to block until a response
is received.

ORB
Object request broker. A library that enables CORBA objects to locate and
communicate with one another.

OS principal
A principal native to the operating system on which the J2EE platform is
executing.

OTS
Object Transaction Service. A definition of the interfaces that permit
CORBA objects to participate in transactions.

parameter entity
An entity that consists of DTD specifications, as distinct from a general
entity. A parameter entity defined in the DTD can then be referenced at other
points, thereby eliminating the need to recode the definition at each location
it is used.

parsed entity
A general entity that contains XML and therefore is parsed when inserted
into the XML document, as opposed to an unparsed entity.

http://www.oasis-open.org/
http://www.XML.org
http://www.omg.org/

GLOSSARY 289
parser
A module that reads in XML data from an input source and breaks it into
chunks so that your program knows when it is working with a tag, an
attribute, or element data. A nonvalidating parser ensures that the XML data
is well formed but does not verify that it is valid. See also validating parser.

passivation
The process of transferring an enterprise bean from memory to secondary
storage. See activation.

persistence
The protocol for transferring the state of an entity bean between its instance
variables and an underlying database.

persistent field
A virtual field of an entity bean that has container-managed persistence; it is
stored in a database.

POA
Portable Object Adapter. A CORBA standard for building server-side appli-
cations that are portable across heterogeneous ORBs.

point-to-point messaging system
A messaging system built on the concept of message queues. Each message
is addressed to a specific queue; clients extract messages from the queues
established to hold their messages.

primary key
An object that uniquely identifies an entity bean within a home.

principal
The identity assigned to a user as a result of authentication.

privilege
A security attribute that does not have the property of uniqueness and that
can be shared by many principals.

processing instruction
Information contained in an XML structure that is intended to be interpreted
by a specific application.

programmatic security
Security decisions that are made by security-aware applications. Program-
matic security is useful when declarative security alone is not sufficient to
express the security model of an application.

prolog
The part of an XML document that precedes the XML data. The prolog
includes the declaration and an optional DTD.

290 GLOSSARY
public key certificate
Used in client-certificate authentication to enable the server, and optionally
the client, to authenticate each other. The public key certificate is the digital
equivalent of a passport. It is issued by a trusted organization, called a certif-
icate authority, and provides identification for the bearer.

publish/subscribe messaging system
A messaging system in which clients address messages to a specific node in
a content hierarchy, called a topic. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierar-
chy. The system takes care of distributing the messages arriving from a
node’s multiple publishers to its multiple subscribers.

query string
A component of an HTTP request URL that contains a set of parameters and
values that affect the handling of the request.

queue
See point-to-point messaging system.

RAR
Resource Adapter Archive. A JAR archive that contains a resource adapter
module.

RDF
Resource Description Framework. A standard for defining the kind of data
that an XML file contains. Such information can help ensure semantic integ-
rity—for example—by helping to make sure that a date is treated as a date
rather than simply as text.

RDF schema
A standard for specifying consistency rules that apply to the specifications
contained in an RDF.

realm
See security policy domain. Also, a string, passed as part of an HTTP request
during basic authentication, that defines a protection space. The protected
resources on a server can be partitioned into a set of protection spaces, each
with its own authentication scheme or authorization database or both.
In the J2EE server authentication service, a realm is a complete database of
roles, users, and groups that identify valid users of a web application or a set
of web applications.

reentrant entity bean
An entity bean that can handle multiple simultaneous, interleaved, or nested
invocations that will not interfere with each other.

GLOSSARY 291
reference
See entity reference.

registry
An infrastructure that enables the building, deployment, and discovery of
web services. It is a neutral third party that facilitates dynamic and loosely
coupled business-to-business (B2B) interactions.

registry provider
An implementation of a business registry that conforms to a specification for
XML registries (for example, ebXML or UDDI).

relationship field
A virtual field of an entity bean having container-managed persistence; it
identifies a related entity bean.

remote interface
One of two interfaces for an enterprise bean. The remote interface defines
the business methods callable by a client.

remove method
Method defined in the home interface and invoked by a client to destroy an
enterprise bean.

render kit
A set of renderers that render output to a particular client. The JavaServer
Faces implementation provides a standard HTML render kit, which is com-
posed of renderers that can render HMTL markup.

renderer
A Java class that can render the output for a set of JavaServer Faces UI com-
ponents.

request-response messaging
A method of messaging that includes blocking until a response is received.

resource adapter
A system-level software driver that is used by an EJB container or an appli-
cation client to connect to an enterprise information system. A resource
adapter typically is specific to an enterprise information system. It is avail-
able as a library and is used within the address space of the server or client
using it. A resource adapter plugs in to a container. The application compo-
nents deployed on the container then use the client API (exposed by the
adapter) or tool-generated high-level abstractions to access the underlying
enterprise information system. The resource adapter and EJB container col-
laborate to provide the underlying mechanisms—transactions, security, and
connection pooling—for connectivity to the enterprise information system.

292 GLOSSARY
resource adapter module
A deployable unit that contains all Java interfaces, classes, and native librar-
ies, implementing a resource adapter along with the resource adapter deploy-
ment descriptor.

resource manager
Provides access to a set of shared resources. A resource manager participates
in transactions that are externally controlled and coordinated by a transaction
manager. A resource manager typically is in a different address space or on a
different machine from the clients that access it. Note: An enterprise infor-
mation system is referred to as a resource manager when it is mentioned in
the context of resource and transaction management.

resource manager connection
An object that represents a session with a resource manager.

resource manager connection factory
An object used for creating a resource manager connection.

RMI
Remote Method Invocation. A technology that allows an object running in
one Java virtual machine to invoke methods on an object running in a differ-
ent Java virtual machine.

RMI-IIOP
A version of RMI implemented to use the CORBA IIOP protocol. RMI over
IIOP provides interoperability with CORBA objects implemented in any
language if all the remote interfaces are originally defined as RMI interfaces.

role (development)
The function performed by a party in the development and deployment
phases of an application developed using J2EE technology. The roles are
application component provider, application assembler, deployer, J2EE
product provider, EJB container provider, EJB server provider, web con-
tainer provider, web server provider, tool provider, and system administrator.

role mapping
The process of associating the groups or principals (or both), recognized by
the container with security roles specified in the deployment descriptor.
Security roles must be mapped by the deployer before a component is
installed in the server.

role (security)
An abstract logical grouping of users that is defined by the application
assembler. When an application is deployed, the roles are mapped to security
identities, such as principals or groups, in the operational environment.

GLOSSARY 293
In the J2EE server authentication service, a role is an abstract name for per-
mission to access a particular set of resources. A role can be compared to a
key that can open a lock. Many people might have a copy of the key; the
lock doesn’t care who you are, only that you have the right key.

rollback
The point in a transaction when all updates to any resources involved in the
transaction are reversed.

root
The outermost element in an XML document. The element that contains all
other elements.

SAX
See Simple API for XML.

Simple API for XML
An event-driven interface in which the parser invokes one of several meth-
ods supplied by the caller when a parsing event occurs. Events include rec-
ognizing an XML tag, finding an error, encountering a reference to an
external entity, or processing a DTD specification.

schema
A database-inspired method for specifying constraints on XML documents
using an XML-based language. Schemas address deficiencies in DTDs, such
as the inability to put constraints on the kinds of data that can occur in a par-
ticular field. Because schemas are founded on XML, they are hierarchical.
Thus it is easier to create an unambiguous specification, and it is possible to
determine the scope over which a comment is meant to apply.

Secure Socket Layer (SSL)
A technology that allows web browsers and web servers to communicate
over a secured connection.

security attributes
A set of properties associated with a principal. Security attributes can be
associated with a principal by an authentication protocol or by a J2EE prod-
uct provider or both.

security constraint
A declarative way to annotate the intended protection of web content. A
security constraint consists of a web resource collection, an authorization
constraint, and a user data constraint.

security context
An object that encapsulates the shared state information regarding security
between two entities.

294 GLOSSARY
security permission
A mechanism defined by J2SE, and used by the J2EE platform to express the
programming restrictions imposed on application component developers.

security permission set
The minimum set of security permissions that a J2EE product provider must
provide for the execution of each component type.

security policy domain
A scope over which security policies are defined and enforced by a security
administrator. A security policy domain has a collection of users (or princi-
pals), uses a well-defined authentication protocol or protocols for authenti-
cating users (or principals), and may have groups to simplify setting of
security policies.

security role
See role (security).

security technology domain
A scope over which the same security mechanism is used to enforce a secu-
rity policy. Multiple security policy domains can exist within a single tech-
nology domain.

security view
The set of security roles defined by the application assembler.

server certificate
Used with the HTTPS protocol to authenticate web applications. The certifi-
cate can be self-signed or approved by a certificate authority (CA). The
HTTPS service of the Sun Java System Application Server Platform Edition
8.1 will not run unless a server certificate has been installed.

server principal
The OS principal that the server is executing as.

service element
A representation of the combination of one or more Connector components
that share a single engine component for processing incoming requests.

service endpoint interface
A Java interface that declares the methods that a client can invoke on a web
service.

servlet
A Java program that extends the functionality of a web server, generating
dynamic content and interacting with web applications using a request-
response paradigm.

GLOSSARY 295
servlet container
A container that provides the network services over which requests and
responses are sent, decodes requests, and formats responses. All servlet con-
tainers must support HTTP as a protocol for requests and responses but can
also support additional request-response protocols, such as HTTPS.

servlet container, distributed
A servlet container that can run a web application that is tagged as distribut-
able and that executes across multiple Java virtual machines running on the
same host or on different hosts.

servlet context
An object that contains a servlet’s view of the web application within which
the servlet is running. Using the context, a servlet can log events, obtain
URL references to resources, and set and store attributes that other servlets
in the context can use.

servlet mapping
Defines an association between a URL pattern and a servlet. The mapping is
used to map requests to servlets.

session
An object used by a servlet to track a user’s interaction with a web applica-
tion across multiple HTTP requests.

session bean
An enterprise bean that is created by a client and that usually exists only for
the duration of a single client-server session. A session bean performs opera-
tions, such as calculations or database access, for the client. Although a ses-
sion bean can be transactional, it is not recoverable should a system crash
occur. Session bean objects either can be stateless or can maintain conversa-
tional state across methods and transactions. If a session bean maintains
state, then the EJB container manages this state if the object must be
removed from memory. However, the session bean object itself must man-
age its own persistent data.

SGML
Standard Generalized Markup Language. The parent of both HTML and
XML. Although HTML shares SGML’s propensity for embedding presenta-
tion information in the markup, XML is a standard that allows information
content to be totally separated from the mechanisms for rendering that con-
tent.

SOAP
Simple Object Access Protocol. A lightweight protocol intended for
exchanging structured information in a decentralized, distributed environ-

296 GLOSSARY
ment. It defines, using XML technologies, an extensible messaging frame-
work containing a message construct that can be exchanged over a variety of
underlying protocols.

SOAP with Attachments API for Java (SAAJ)
The basic package for SOAP messaging, SAAJ contains the API for creating
and populating a SOAP message.

SQL
Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J
A set of standards that includes specifications for embedding SQL state-
ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detect errors in static SQL statements at program
development time, rather than at execution time as with a JDBC driver.

SSL
Secure Socket Layer. A security protocol that provides privacy over the
Internet. The protocol allows client-server applications to communicate in a
way that cannot be eavesdropped upon or tampered with. Servers are always
authenticated, and clients are optionally authenticated.

stateful session bean
A session bean with a conversational state.

stateless session bean
A session bean with no conversational state. All instances of a stateless ses-
sion bean are identical.

system administrator
The person responsible for configuring and administering the enterprise’s
computers, networks, and software systems.

tag
In XML documents, a piece of text that describes a unit of data or an ele-
ment. The tag is distinguishable as markup, as opposed to data, because it is
surrounded by angle brackets (< and >). To treat such markup syntax as data,
you use an entity reference or a CDATA section.

template
A set of formatting instructions that apply to the nodes selected by an XPath
expression.

GLOSSARY 297
tool provider
An organization or software vendor that provides tools used for the develop-
ment, packaging, and deployment of J2EE applications.

topic
See publish-subscribe messaging system.

transaction
An atomic unit of work that modifies data. A transaction encloses one or
more program statements, all of which either complete or roll back. Transac-
tions enable multiple users to access the same data concurrently.

transaction attribute
A value specified in an enterprise bean’s deployment descriptor that is used
by the EJB container to control the transaction scope when the enterprise
bean’s methods are invoked. A transaction attribute can have the following
values: Required, RequiresNew, Supports, NotSupported, Mandatory, or Never.

transaction isolation level
The degree to which the intermediate state of the data being modified by a
transaction is visible to other concurrent transactions and data being modi-
fied by other transactions is visible to it.

transaction manager
Provides the services and management functions required to support transac-
tion demarcation, transactional resource management, synchronization, and
transaction context propagation.

Unicode
A standard defined by the Unicode Consortium that uses a 16-bit code page
that maps digits to characters in languages around the world. Because 16 bits
covers 32,768 codes, Unicode is large enough to include all the world’s lan-
guages, with the exception of ideographic languages that have a different
character for every concept, such as Chinese. For more information, see
http://www.unicode.org/.

Universal Description, Discovery and Integration (UDDI) project
An industry initiative to create a platform-independent, open framework for
describing services, discovering businesses, and integrating business ser-
vices using the Internet, as well as a registry. It is being developed by a ven-
dor consortium.

Universal Standard Products and Services Classification (UNSPSC)
A schema that classifies and identifies commodities. It is used in sell-side
and buy-side catalogs and as a standardized account code in analyzing
expenditure.

http://www.unicode.org/

298 GLOSSARY
unparsed entity
A general entity that contains something other than XML. By its nature, an
unparsed entity contains binary data.

URI
Uniform resource identifier. A globally unique identifier for an abstract or
physical resource. A URL is a kind of URI that specifies the retrieval proto-
col (http or https for web applications) and physical location of a resource
(host name and host-relative path). A URN is another type of URI.

URL
Uniform resource locator. A standard for writing a textual reference to an
arbitrary piece of data in the World Wide Web. A URL looks like this: proto-
col://host/localinfo where protocol specifies a protocol for fetching the object
(such as http or ftp), host specifies the Internet name of the targeted host, and
localinfo is a string (often a file name) passed to the protocol handler on the
remote host.

URL path
The part of a URL passed by an HTTP request to invoke a servlet. A URL
path consists of the context path + servlet path + path info, where
• Context path is the path prefix associated with a servlet context of which

the servlet is a part. If this context is the default context rooted at the base
of the web server’s URL namespace, the path prefix will be an empty
string. Otherwise, the path prefix starts with a / character but does not end
with a / character.

• Servlet path is the path section that directly corresponds to the mapping
that activated this request. This path starts with a / character.

• Path info is the part of the request path that is not part of the context path
or the servlet path.

URN
Uniform resource name. A unique identifier that identifies an entity but
doesn’t tell where it is located. A system can use a URN to look up an entity
locally before trying to find it on the web. It also allows the web location to
change, while still allowing the entity to be found.

user data constraint
Indicates how data between a client and a web container should be protected.
The protection can be the prevention of tampering with the data or preven-
tion of eavesdropping on the data.

GLOSSARY 299
user (security)
An individual (or application program) identity that has been authenticated.
A user can have a set of roles associated with that identity, which entitles the
user to access all resources protected by those roles.

valid
A valid XML document, in addition to being well formed, conforms to all
the constraints imposed by a DTD. It does not contain any tags that are not
permitted by the DTD, and the order of the tags conforms to the DTD’s spec-
ifications.

validating parser
A parser that ensures that an XML document is valid in addition to being
well formed. See also parser.

value-binding expression
A JavaServer Faces EL expression that refers to a property of a backing
bean. A component tag uses this expression to bind the associated compo-
nent’s value or the component instance to the bean property. If the compo-
nent tag refers to the property via its value attribute, then the component’s
value is bound to the property. If the component tag refers to the property via
its binding attribute then the component itself is bound to the property.

virtual host
Multiple hosts plus domain names mapped to a single IP address.

W3C
World Wide Web Consortium. The international body that governs Internet
standards. Its web site is http://www.w3.org/.

WAR file
Web application archive file. A JAR archive that contains a web module.

warning
A SAX parser warning is generated when the document’s DTD contains
duplicate definitions and in similar situations that are not necessarily an error
but which the document author might like to know about, because they could
be. See also fatal error, error.

Web application
An application written for the Internet, including those built with Java tech-
nologies such as JavaServer Pages and servlets, as well as those built with
non-Java technologies such as CGI and Perl.

Web application, distributable
A web application that uses J2EE technology written so that it can be
deployed in a web container distributed across multiple Java virtual

http://www.w3.org/

300 GLOSSARY
machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

Web component
A component that provides services in response to requests; either a servlet
or a JSP page.

Web container
A container that implements the web component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for web components
that includes security, concurrency, life-cycle management, transaction,
deployment, and other services. A web container provides the same services
as a JSP container as well as a federated view of the J2EE platform APIs. A
web container is provided by a web or J2EE server.

Web container, distributed
A web container that can run a web application that is tagged as distributable
and that executes across multiple Java virtual machines running on the same
host or on different hosts.

Web container provider
A vendor that supplies a web container.

Web module
A deployable unit that consists of one or more web components, other
resources, and a web application deployment descriptor contained in a hier-
archy of directories and files in a standard web application format.

Web resource
A static or dynamic object contained in a web application that can be refer-
enced by a URL.

Web resource collection
A list of URL patterns and HTTP methods that describe a set of web
resources to be protected.

Web server
Software that provides services to access the Internet, an intranet, or an
extranet. A web server hosts web sites, provides support for HTTP and other
protocols, and executes server-side programs (such as CGI scripts or serv-
lets) that perform certain functions. In the J2EE architecture, a web server
provides services to a web container. For example, a web container typically
relies on a web server to provide HTTP message handling. The J2EE archi-
tecture assumes that a web container is hosted by a web server from the
same vendor, so it does not specify the contract between these two entities.
A web server can host one or more web containers.

GLOSSARY 301
Web server provider
A vendor that supplies a web server.

Web service
An application that exists in a distributed environment, such as the Internet.
A web service accepts a request, performs its function based on the request,
and returns a response. The request and the response can be part of the same
operation, or they can occur separately, in which case the consumer does not
need to wait for a response. Both the request and the response usually take
the form of XML, a portable data-interchange format, and are delivered over
a wire protocol, such as HTTP.

well-formed
An XML document that is syntactically correct. It does not have any angle
brackets that are not part of tags, all tags have an ending tag or are them-
selves self-ending, and all tags are fully nested. Knowing that a document is
well formed makes it possible to process it. However, a well-formed docu-
ment may not be valid. To determine that, you need a validating parser and a
DTD.

Xalan
An interpreting version of XSLT.

XHTML
An XML look-alike for HTML defined by one of several XHTML DTDs.
To use XHTML for everything would of course defeat the purpose of XML,
because the idea of XML is to identify information content, and not just to
tell how to display it. You can reference it in a DTD, which allows you to
say, for example, that the text in an element can contain and tags
rather than being limited to plain text.

XLink
The part of the XLL specification that is concerned with specifying links
between documents.

XLL
The XML Link Language specification, consisting of XLink and XPointer.

XML
Extensible Markup Language. A markup language that allows you to define
the tags (markup) needed to identify the content, data, and text in XML doc-
uments. It differs from HTML, the markup language most often used to
present information on the Internet. HTML has fixed tags that deal mainly
with style or presentation. An XML document must undergo a transforma-
tion into a language with style tags under the control of a style sheet before it
can be presented by a browser or other presentation mechanism. Two types

302 GLOSSARY
of style sheets used with XML are CSS and XSL. Typically, XML is trans-
formed into HTML for presentation. Although tags can be defined as needed
in the generation of an XML document, a document type definition (DTD)
can be used to define the elements allowed in a particular type of document.
A document can be compared by using the rules in the DTD to determine its
validity and to locate particular elements in the document. A web services
application’s J2EE deployment descriptors are expressed in XML with sche-
mas defining allowed elements. Programs for processing XML documents
use SAX or DOM APIs.

XML registry
See registry.

XML Schema
The W3C specification for defining the structure, content, and semantics of
XML documents.

XPath
An addressing mechanism for identifying the parts of an XML document.

XPointer
The part of the XLL specification that is concerned with identifying sections
of documents so that they can be referenced in links or included in other
documents.

XSL
Extensible Stylesheet Language. A standard that lets you do the following:
• Specify an addressing mechanism, so that you can identify the parts of an

XML document that a transformation applies to (XPath).
• Specify tag conversions, so that you can convert XML data into different

formats (XSLT).
• Specify display characteristics, such page sizes, margins, and font heights

and widths, as well as the flow objects on each page. Information fills in
one area of a page and then automatically flows to the next object when
that area fills up. That allows you to wrap text around pictures, for exam-
ple, or to continue a newsletter article on a different page (XSL-FO).

XSL-FO
A subcomponent of XSL used for describing font sizes, page layouts, and
how information flows from one page to another.

XSLT
Extensible Stylesheet Language Transformations. An XML document that
controls the transformation of an XML document into another XML docu-
ment or HTML. The target document often has presentation-related tags dic-

GLOSSARY 303
tating how it will be rendered by a browser or other presentation mechanism.
XSLT was formerly a part of XSL, which also included a tag language of
style flow objects.

XSLTC
A compiling version of XSLT.

304 GLOSSARY

Index

Numerics
43996

B-Head
Registering the J2EE Ap-

plication Server 24

A
abstract schemas 111

deployment descriptors 111
hidden from clients 116
naming conventions 123

access methods
examples 230
local interfaces 225
persistent fields 112, 215
primary keys 243
relationship fields 113, 216

addChildElement method 63
addTextNode method 63
Admin Console 23

starting 25–26
applet containers 10
applets 4, 6
application client containers 10
application clients 4

examples 258

Application Server
downloading xii
installation tips xii
server logs 26
starting 24
stopping 25
tools 23
user interface technologies 22

AttachmentPart class 57, 72
creating objects 72
headers 73

attachments 56
adding 72
SAAJ example 99

attributes
SOAP envelope 64

B
bean-managed persistence

defined 110
EJB containers
examples 167, 193, 202
relationships 110

business logic 106, 180
business methods 117

client calls 145
305

306 INDEX
examples 220
exceptions 146
local interfaces 225
message-driven beans 260
requirements 145

business objects 109, 167

C
call method 58–59, 67
Call object 47
cascade deletes 251
close method 68
CMP

See container-managed-per-
sistence

CMR
See container-managed rela-

tionships
connection factories, JMS

creating 260
looking up 258

connections, SAAJ 58
closing 68
point-to-point 67

connectors
See J2EE Connector architec-

ture
container-managed persistence
111

cascade deletes 251
EJB QL 111, 250
examples 209
one-to-many 247
one-to-one 247
persistent fields 215
primary keys 247

compound 249

primitive types 248
unknown 243, 247

relationship fields 216
relationships 110
table mapping 250

container-managed relationships
245

bidirection 210
bidirectional 113
defined 111
direction 118
EJB QL 114
examples 210
local access 118
many-to-many 113
many-to-one 113
multiplicity 113, 210
one-to-many 113
one-to-one 113
self-referential 246
unidirectional 114, 247

containers 8
configurable services 9
non-configurable services 9
See also

applet containers
application client contain-

ers
EJB containers
web containers

services 8
Context interface 133
create method

bean-managed persistence 172
compared to ejbCreate method

148
examples 144, 195
life cycles 123, 125

INDEX 307
requirements 149, 183, 224
createTimer method 159

D
databases

bean-managed persistence 167
BLOBs 251
business methods 178
clients 106, 116
CLOBs 251
connections 124, 146, 164
creating tables 168
deleting rows 174
EIS tier 2
entity beans 109
exceptions 164
foreign keys 113, 188
inserting rows 172
message-driven beans and 115
persistent fields 112
portable beans 111
primary keys 188, 204
read-only data 109
referential constraints 188
relationships for bean-man-

aged persistence 187
See also persistence
synchronizing with entity

beans 175
table relationships

many-to-many 201
one-to-many 192
one-to-one 188

deployment descriptors 13
abstract schema 111
container-managed persis-

tence 215

creating 121
enterprise beans 121, 123
portable 13
primary key class 204
runtime 13

deploytool
redeploy operation 137
starting 25

destinations, JMS
creating 260
looking up 258

detachNode method 62
Detail interface 82
DetailEntry interface 82
DII 47
DII clients

examples 47
DNS 20
DOM

SAAJ and 58, 72, 95
domains 24
downloading

Application Server xii
J2EE 1.4 SDK xii

dynamic invocation interface
See DII

dynamic proxies 44
dynamic proxy clients

examples 44

E
EAR files 13
ebXML 12, 18
EIS tier 8
EJB

timer service 159
EJB containers 10

308 INDEX
bean-managed persistence
See bean-managed persis-

tence
container-managed persis-

tence 110
generating primary keys 243
instance contexts 158
instantiating enterprise beans

123, 144
onMessage method, invoking 261
persistence 209
persistent fields 215
relationships 111, 209
services 105

EJB JAR files 122
container-managed relation-

ships 118
portability 122

EJB QL
deployment descriptors 111
EJB containers 111
finder methods 111, 237
relationship direction 114
select methods 217

ejbActivate method 124–126
ejbCreate method

bean-managed persistence 172
compared to create method 148
container-managed persis-

tence 223
examples 143, 172, 194, 223,

229
life cycles 123, 125, 127
message-driven beans 261
primary keys 126, 206, 243
requirements 145

ejbFindByPrimaryKey method 177, 206
EJBHome interface 148

ejbLoad method 175, 198, 202, 223
EJBObject interface 149
ejbPassivate method 124–125, 127
ejbPostCreate method 125, 174, 223
ejbRemove method

bean-managed persistence
174, 203

container-managed persis-
tence 223

life cycles 124–125, 127
message-driven beans 261

ejbStore method 175, 223
ejbTimeout method 159–160
enterprise beans 6, 15

accessing 116
container-managed persis-

tence
See container-managed

persistence
contents 121
defined 105
deployment 122
distribution 119
entity beans

See entity beans
environment entries 156
exceptions 164
home methods 250
implementor of business logic

6
interfaces 116, 121
life cycles 117, 123
local access 118
local home interfaces

See local home interfaces
local interfaces

See local interfaces
lookups 134

INDEX 309
message-driven beans. See
message-driven beans

performance 118–119, 121
persistence

See persistence
references 134
remote access 117
remote interfaces

See remote interfaces
See also J2EE components
session beans

See session beans
state 113
types 7, 107
web service endpoint interfac-

es 120
web services 107–108, 116,

120, 153
Enterprise Information Systems

See EIS tier
Enterprise JavaBeans Query Lan-
guage

See EJB QL
entity beans 7, 15, 109

bean-managed persistence
See bean-managed persis-

tence
container-managed persis-

tence
See container-managed

persistence
container-managed versus

bean-managed 214
equality 158
finder methods 118
garbage collection 127
persistent state 114
primary keys

See primary keys
EntityBean interface 169
EntityContext interface 158, 174
environment entries 156
examples

access methods 230
bean-managed persistence

167, 193, 202
business methods 220
container-managed persis-

tence 209, 239, 244
container-managed relation-

ships 210
create method 144, 195
DII clients 47
directory structure xiii
downloading xii
dynamic proxy clients 44
ejbCreate method 143, 172, 194,

223, 229
finder methods 189, 237
home interfaces 148, 182
local interfaces 224, 230
location xii
persistent fields 216
primary keys 204, 242
relationship fields 217
remote interfaces 149
required software xii
SAAJ

attachments 99
DOM 95
headers 93
request-response 86
SOAP faults 101

session beans 132, 139, 157
timer service 162
web clients 133

310 INDEX
web services 30
exceptions

business methods 146
create method 149, 183
ejbCreate method 173
ejbCreate method 145
ejbFindByPrimaryKey method 178
ejbRemove method 175
enterprise beans 164
javax.ejb package 165
rolling back transactions 165

F
findByPrimaryKey method 199, 230,
233
finder methods 250

bean-managed persistence 176
compared to select methods

217
container-managed persis-

tence 214
examples 189, 237
home interfaces 183
local home interfaces 224
returning collections 195

foreign keys 247
fully qualified names 63

G
garbage collection 127
getAttachments method 74
getBody method 62
getEJBObject method 174
getEnvelope method 62
getHeader method 62
getInfo method 161

getNextTimeout method 161
getObject method 158
getPrimaryKey method 174, 207
getSOAPBody method 62
getSOAPHeader method 62
getSOAPPart method 61
getters

See access methods
getTimeRemaining method 161
getValue method 68

H
helper classes 122, 142, 192
home interfaces 148, 182

defined 117
examples 148, 182
home methods 181

home methods 180, 183
HTTP 29–30

I
InitialContext interface 20
isIdentical method 158

J
J2EE 1.4 platform

APIs 15
J2EE 1.4 SDK

downloading xii
J2EE applications 2

debugging 26
deploying 135
iterative development 137
tiers 2

J2EE clients 4

INDEX 311
application clients 4
See also application clients

web clients 4
See also web clients

web clients versus application
clients 5

J2EE components 3
types 3

J2EE Connector architecture
J2EE modules 13–14

application client modules 14
EJB modules 14, 122
resource adapter modules 14
web modules

See web modules
J2EE platform 1–2
J2EE security model 9
J2EE servers 10
J2EE transaction model 9
J2SE SDK 42
JAAS 20
JAF 17
Java API for XML Processing

See JAXP
Java API for XML Registries

See JAXR
Java API for XML-based RPC

See JAX-RPC
Java Authentication and Authori-
zation Service

See JAAS
Java Message Service

See JMS
Java Message Service (JMS) API

message-driven beans. See
message-driven beans

Java Naming and Directory Inter-
face

See JNDI
Java Servlet technology 16

See also servlets
Java Transaction API

See JTA
JavaBeans Activation Framework

See JAF
JavaBeans components 5, 43
JavaMail API 17
JavaServer Faces 22
JavaServer Pages (JSP) technolo-
gy 16

See also JSP pages
JavaServer Pages Standard Tag
Library

See JSTL
javax.activation.DataHandler class 73–74
javax.xml.soap package 53
javax.xml.transform.Source interface 70
JAXM specification 53
JAXP 17
JAXR 18
JAX-RPC 17

clients 43
defined 29
JavaBeans components 43
mapping files 34
service endpoint interface

interface configuration
files 34

service endpoint interfaces 31
conformance rules 32

specification 51
supported types 42
WSDL files 34

JAXRPC
clients

invoking stubs 40

312 INDEX
JDBC API 19
JMS

J2EE examples 255
JMS API 16
JNDI 19, 133

data source naming subcon-
texts 20

enterprise bean naming sub-
contexts 20

environment naming contexts
20

lookup method 134
naming and directory services

20
naming context 133
naming contexts 20
naming environments 20
naming subcontexts 20

JSP pages
URLs for running 136

JSTL 22
JTA 16

L
LDAP 20
local home interfaces 224

defined 118
local interfaces 225

defined 118
examples 224, 230
requirements 185

local names 65–66

M
message listeners

JMS 114

message-driven beans 7, 15, 114
accessing 115
defined 114
examples 255
garbage collection 127
onMessage method 115, 261
requirements 260

MessageFactory class 60
messages, SAAJ

accessing elements 61
adding body content 62
attachments 56
creating 60
getting the content 68
overview 54

MIME
headers 58

N
Name interface 62
names

fully qualified 63, 65
local 65–66

namespaces 63
prefix 64

NDS 20
NIS 20
nodes

SAAJ and 54

O
onMessage method

message-driven beans 115,
261

INDEX 313
P
persistence

bean-managed
See bean-managed persis-

tence
container-managed

See container-managed
persistence

entity beans 109
session beans 107
types 110

persistent fields 112
examples 216

physical schemas 111
PointBase database 23

starting 25
point-to-point connection, SAAJ
67
prerequisites xi
primary keys 247

automatically generating 243,
247

bean-managed persistence 204
composite 204, 241
compound 249
container-managed persis-

tence 241
defined 110
examples 204, 242
methods for setting 126
primitive types 248
returned by create method 172
See also ejbFindByPrimaryKey

method
unknown 243, 247

printing the tutorial xiv
proxies 29–30, 36

Q
QName object 44
queues

looking up 258

R
relationship fields

defined 113
direction 113
examples 217
modifying by local clients 234

relationships
bean-managed persistence 111
container-managed

See container-managed re-
lationships

multiplicities 113
remote interfaces

defined 117
examples 149
requirements 150

remote procedure calls 29
remove method

bean-managed persistence 174
life cycles 124–125

request-response messaging 58
resource adapters 19
RPC 29

S
SAAJ 18, 53

examples 85
messages 54
overview 54
specification 53
tutorial 59

314 INDEX
select methods 217, 239, 250
selector methods

See select methods
session beans 7, 15, 107

activation 124
clients 107
compared to entity beans 109
equality 158
examples 132, 139, 157
passivation 124
requirements 140
stateful 108–109
stateless 108–109
web services 120, 154

SessionContext interface 158
setContent method 70, 73
setEntityContext method 125, 195,
198
setMessageDrivenContext method 127
setSessionContext method 123, 159
setters

See access methods
SOAP 29–30, 51, 53

body 65
adding content 62
Content-Type header 73

envelope 64
headers

adding content 69
Content-Id 73
Content-Location 73
Content-Type 73
example 93

SOAP faults 80
detail 81
fault actor 81
fault code 81
fault string 81

retrieving information 83
SAAJ example 101

SOAP messages 12
SOAP with Attachments API for
Java

See SAAJ
SOAPBody interface 55, 65
SOAPBodyElement interface 62, 65,
91
SOAPConnection class 58

getting objects 67
SOAPElement interface 63, 91
SOAPEnvelope interface 55, 62, 64
SOAPFactory class 62
SOAPFault interface 80

creating and populating ob-
jects 82

detail element 81
fault actor element 81
fault code element 81
fault string element 81

SOAPHeader interface 55, 69
SOAPHeaderElement interface 63, 69
SOAPMessage class 55, 61
SOAPPart class 55, 58, 63

adding content 70
SQL 15, 19, 111, 168, 172–173,
175–176
static stubs 36
stubs 30, 36
Sun Java System Application
Server Platform Edition 8 21

See also Application Server

T
TimedObject interface 159
Timer interface 159

INDEX 315
timer service 159
cancelling timers 160
creating timers 159
examples 162
exceptions 161
getting information 161
saving timers 160
transactions 161

TimerHandle interface 159
TimerService interface 159
transactions

boundaries 110
exceptions

See exceptions
transactions

message-driven beans 116
shared data 110
timer service 161

typographical conventions xiv

U
UDDI 12

accessing registries with SAAJ
86

unsetEntityContext method 126
utility classes 122, 168

V
value types 43
verifier 23

W
W3C 30, 51
web clients 4

examples 133

web components 6
applets bundled with 6
types 6
utility classes bundled with 6

web containers 10
web modules 14
web services 10

clients 43
EJB. See enterprise beans, web

services
endpoint interfaces 154
examples 30

work flows 109
wscompile 23
wscompile tool 31
wsdeploy 23
WSDL 12, 30, 42, 44, 51

X
XML 11, 29, 42

documents, and SAAJ 54
elements in SOAP messages

54

316 INDEX

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	About the Examples
	Required Software
	Tutorial Bundle
	NetBeans IDE 4.1
	Application Server

	Building the Examples
	Tutorial Example Directory Structure

	Further Information
	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Overview
	Distributed Multitiered Applications
	J2EE Components
	J2EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeans™ Component Architecture
	J2EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	J2EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format
	UDDI and ebXML Standard Formats

	Packaging Applications
	J2EE 1.4 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Pages Technology
	Java Message Service API
	Java Transaction API
	JavaMail API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java API for XML-Based RPC
	SOAP with Attachments API for Java
	Java API for XML Registries
	J2EE Connector Architecture
	JDBC API
	Java Naming and Directory Interface
	Java Authentication and Authorization Service
	Simplified Systems Integration

	Sun Java System Application Server Platform Edition 8
	Technologies
	JavaServer Pages Standard Tag Library
	JavaServer Faces

	Tools
	Registering the Application Server
	Starting and Stopping the Application Server
	Starting the Admin Console
	Starting and Stopping the PointBase Database Server
	Debugging J2EE Applications
	Using the Server Log
	Using the NetBeans Debugger

	Building Web Services with JAX-RPC
	Setting the Port
	Creating a Simple Web Service and Client with JAX-RPC
	Generating and Coding the Service Endpoint Interface and Implementation Class
	Building the Service
	The compile Task
	The Hello_wscompile Task
	The dist Task
	Specifying the Endpoint Address

	Deploying the Service
	Undeploying the Service

	Static Stub Clients
	J2EE Container-Generated Static Stub Client
	IDE-Generated Static Stub Client
	Building the Static Stub Client

	Running the Static Stub Client

	Types Supported by JAX-RPC
	J2SE SDK Classes
	Primitives
	Arrays
	Value Types

	Web Service Clients
	Dynamic Proxy Client
	Coding the Dynamic Proxy Client
	Building and Running the Dynamic Proxy Client

	Dynamic Invocation Interface Client
	Coding the DII Client
	Building and Running the DII Client

	Web Services Interoperability and JAX- RPC
	Further Information

	SOAP with Attachments API for Java
	Overview of SAAJ
	Messages
	The Structure of an XML Document
	What Is in a Message?
	SAAJ and DOM

	Connections
	SOAPConnection Objects

	Tutorial
	Creating and Sending a Simple Message
	Creating a Message
	Parts of a Message
	Accessing Elements of a Message
	Adding Content to the Body
	Getting a SOAPConnection Object
	Sending a Message
	Getting the Content of a Message

	Adding Content to the Header
	Adding Content to the SOAPPart Object
	Adding a Document to the SOAP Body
	Manipulating Message Content Using SAAJ or DOM APIs
	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object

	Adding Attributes
	Header Attributes

	Using SOAP Faults
	Overview of SOAP Faults
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request.java
	MyUddiPing.java
	Setting Up
	Examining MyUddiPing
	Running MyUddiPing

	HeaderExample.java
	Running HeaderExample

	DOMExample.java and DOMSrcExample.java
	Examining DOMExample
	Examining DOMSrcExample
	Running DOMExample and DOMSrcExample

	Attachments.java
	Running Attachments

	SOAPFaultTest.java
	Running SOAPFaultTest

	Further Information

	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	State Management Modes
	Stateless Session Beans
	Stateful Session Beans

	When to Use Session Beans

	What Is an Entity Bean?
	What Makes Entity Beans Different from Session Beans?
	Persistence
	Shared Access
	Primary Key
	Relationships

	Container-Managed Persistence
	Abstract Schema
	Multiplicity in Container-Managed Relationships
	Direction in Container-Managed Relationships

	When to Use Entity Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session and Entity Beans?
	When to Use Message-Driven Beans

	Defining Client Access with Interfaces
	Remote Clients
	Local Clients
	Local Interfaces and Container-Managed Relationships
	Deciding on Remote or Local Access
	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Life Cycles of Enterprise Beans
	The Life Cycle of a Stateful Session Bean
	The Life Cycle of a Stateless Session Bean
	The Life Cycle of an Entity Bean
	The Life Cycle of a Message-Driven Bean

	Further Information

	Getting Started with Enterprise Beans
	Creating the J2EE Application
	Creating the Enterprise Bean
	Creating the ConverterBean Enterprise Bean
	Adding Business Methods

	Creating the Web Client
	Coding the Web Client
	Locating the Home Interface
	Invoking Business Methods

	Specifying the Enterprise Application’s Default URL
	Deploying the J2EE Application
	Running the Web Client
	Modifying the J2EE Application
	Modifying a Deployment Setting

	Session Bean Examples
	The CartBean Example Application
	Creating the Cart EJB Project
	Creating the Session Bean
	Helper Classes
	The ejbCreate Methods
	Business Methods
	Managing Your Import Statements

	Session Bean Interfaces
	Home Interface
	Remote Interface
	Business Interface

	Building and Deploying the Application
	The CartClient Application
	Creating the CartClient Application
	Opening the CartClient Project
	Running the CartClient Application

	The HelloService Web Service Example
	Opening the HelloService Example
	Web Service Endpoint Interface
	Stateless Session Bean Implementation Class
	Running the HelloWebClient Application

	Other Enterprise Bean Features
	Accessing Environment Entries
	Comparing Enterprise Beans
	Passing an Enterprise Bean’s Object Reference

	Using the Timer Service
	Creating Timers
	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The TimerSessionBean Example
	Running the TimerSessionBean Example

	Handling Exceptions

	Bean-Managed Persistence Examples
	The SavingsAccountBean Example
	Creating the SavingsAccount Project
	Creating the SavingsAccount Project
	Creating the SavingsAccount Enterprise Bean

	Entity Bean Class
	The EntityBean Interface
	The Database Lookup
	Database Access Methods
	The ejbCreate Method
	The ejbPostCreate Method
	The ejbRemove Method
	The ejbLoad and ejbStore Methods
	The Finder Methods
	The Business Methods
	The Home Methods

	Home Interface
	create Method Definitions
	Finder Method Definitions
	Home Method Definitions

	Remote Interface
	Running the SavingsAccount Example
	Creating the Sample Database
	Deploying the Application
	Running the Client

	Mapping Table Relationships for Bean- Managed Persistence
	One-to-One Relationships
	Running the StorageBinBean Example

	One-to-Many Relationships
	A Helper Class for the Child Table
	Running the OrderBean Example
	An Entity Bean for the Child Table
	Running the SalesRepBean Example

	Many-to-Many Relationships
	Running the EnrollerBean Example

	Primary Keys for Bean-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Getting the Primary Key

	Container-Managed Persistence Examples
	Overview of the Roster Module
	Creating the Roster EJB Module
	Creating the Project
	Creating the Database Tables
	Generating the CMP Entity Beans

	The PlayerBean Code
	Entity Bean Class
	Differences between Container-Managed and Bean- Managed Code
	Access Methods
	Finder and Select Methods
	Helper Classes
	Business Methods
	Entity Bean Methods

	Refactoring Entity Bean Methods
	Local Home Interface
	Local Interface

	Creating the RosterBean Session Bean
	Method Invocations in the Roster Module
	Creating a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Adding a Player to a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Removing a Player
	1. RosterClient
	2. RosterBean

	Dropping a Player from a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting the Players of a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting a Copy of a Team’s Players
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Finding the Players by Position
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Getting the Sports of a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Building and Running the Roster Example
	Building and Deploying the EJB Module
	Running the Client Application

	Primary Keys for Container-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Generating Primary Key Values

	Advanced CMP Topics: The Order Example
	Structure of Order
	Bean Relationships in Order
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in Order’s Entity Beans
	Unknown Primary Keys
	Primitive Type Primary Keys
	Compound Primary Keys

	Entity Bean Mapped to More Than One Database Table
	Finder and Selector Methods
	Using Home Methods
	Cascade Deletes in Order
	BLOB and CLOB Database Types in Order
	Building and Running the Order Example
	Building and Deploying the EJB Module
	Running the OrderClient Example

	A Message-Driven Bean Example
	Example Application Overview
	The SimpleMessageClient Application
	Creating the SimpleMessageClient application

	The Message-Driven Bean
	Creating the SimpleMessage EJB Module
	Creating the SimpleMessageMDB
	The ejbCreate and ejbRemove Methods
	The onMessage Method

	Building and Deploying SimpleMessage Module
	Building and Deploying the Application
	Running the Client
	Removing the Administered Objects

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

