TheJ2EE™ 1.4 Tutorial

for NetBeans™ IDE 4.1

For Sun Java System Application Server
Platform Edition 8.1

Eric Armstrong
Jennifer Ball
Stephanie Bodoff
Debbie Bode Carson
lan Evans

Kenneth Ganfield
Dae Green

Kim Haase

Eric Jendrock

John Jullion-Ceccarélli
Geertjan Wielenga

May 11, 2005

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.U.S. Government Rights - Commercia software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise JavaBeans, Java
Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run Anywhere”, and the Java
Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, samples) is pro-
vided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and
may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or
nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to coun-
tries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the
denied persons and specially designated nationals listsis strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTA-
TIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous
droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmen-
taux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la
FAR [(Federal Acquisition Regulations) et des suppléments acelles-ci.

Cette distribution peut comprendre des composants dével oppés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise JavaBeans, Java
Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run Anywhere”, et le logo
Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d' autres pays.

A moins qu’ autrement autorisé, le code de logiciel en tousles matériaux techniques dans le présent (articlesy compris,
FAQs, échantillons) est fourni sous ce permis.

Les produits qui font I'objet de ce manuel d’entretien et les informations qu'il contient sont régis par la Iégislation
américaine en matiére de contrdle des exportations et peuvent étre soumis au droit d’ autres pays dans le domaine des
exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interd-
ites. Les exportations ou réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les
listes d' exclusion d’ exportation américaines, y compris, mais de maniére non exclusive, la liste de personnes qui font
objet d'un ordre de ne pas participer, d une fagon directe ou indirecte, aux exportations des produits ou des services
qui sont régi par lalégislation américaine en matiére de contréle des exportations ("U .S. Commerce Department’s
Table of Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS
ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE
AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELA-
TIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ ABSENCE DE CONTREFACON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

Chapter 1.

About ThisTutorial..........

Who Should Use This Tutorial
Prerequisites

About the Examples

Further Information

How to Print This Tutorial
Typographical Conventions
Feedback

Distributed Multitiered Applications
J2EE Components
J2EE Clients
Web Components
Business Components
Enterprise Information System Tier
J2EE Containers
Container Services
Container Types
Web Services Support
XML
SOAP Transport Protocol
WSDL Standard Format
UDDI and ebXML Standard Formats
Packaging Applications
J2EE 1.4 APIs
Enterprise JavaBeans Technology
Java Servlet Technology
JavaServer Pages Technology

Contenté

Xiii
Xiv
Xiv

XV

© 0000w Ooh~WwWN

PR RRPRPRPRRPRRRR
OOV WNNNEREO

CONTENTS

Java Message Service AP 16
Java Transaction API 16
JavaMail AP 17
JavaBeans Activation Framework 17
Java API for XML Processing 17
Java APl for XML-Based RPC 17
SOAP with Attachments API for Java 18
Java APl for XML Registries 18
J2EE Connector Architecture 19
JDBC API 19
Java Naming and Directory Interface 19
Java Authentication and Authorization Service 20
Simplified Systems Integration 21
Sun Java System Application Server Platform Edition 8 21
Technologies 22
Tools 23
Registering the Application Server 24
Starting and Stopping the Application Server 24
Starting the Admin Console 25
Starting and Stopping the PointBase Database Server 25
Debugging J2EE Applications 25
Chapter 2: Building Web Serviceswith JAX-RPC. 29
Setting the Port 30
Creating a Simple Web Service and Client with JAX-RPC 30
Generating and Coding the Service Endpoint Interface and Implementa-
tion Class 32
Building the Service 33
Deploying the Service 36
Static Stub Clients 36
Running the Static Stub Client 41
Types Supported by JAX-RPC 42
J2SE SDK Classes 42
Primitives 42
Arrays 43
Vaue Types 43
JavaBeans Components 43
Web Service Clients 43
Dynamic Proxy Client 44

Dynamic Invocation Interface Client 47

Chapter 3:

Chapter 4.

CONTENTS

Web Services I nteroperability and JAX-RPC
Further Information

SOAP with AttachmentsAPI for Java

Overview of SAAJ
Messages
Connections

Tutorial
Creating and Sending a Simple Message
Adding Content to the Header
Adding Content to the SOAPPart Object
Adding a Document to the SOAP Body
Manipulating Message Content Using SAAJor DOM APIs
Adding Attachments
Adding Attributes
Using SOAP Faults

Code Examples
Request.java
MyUddiPing.java
HeaderExample.java
DOMExample.java and DOM SrcExample.java
Attachments.java
SOAPFaultTest.java

Further Information

EnterpriseBeans................. ...,

What Isan Enterprise Bean?
Benefits of Enterprise Beans
When to Use Enterprise Beans
Types of Enterprise Beans

What I'sa Session Bean?

State Management Modes
When to Use Session Beans

What Isan Entity Bean?
What Makes Entity Beans Different from Session Beans?
Container-Managed Persistence
When to Use Entity Beans

What Isa Message-Driven Bean?

111
114
114

What Makes Message-Driven Beans Different from Session and Entity

Vi

Chapter 5:

Chapter 6:

CONTENTS

Beans?

When to Use Message-Driven Beans
Defining Client Accesswith Interfaces

Remote Clients

Local Clients

Local Interfaces and Contai ner-Managed Relationships

Deciding on Remote or Local Access

Web Service Clients

Method Parameters and Access
The Contents of an Enterprise Bean
Naming Conventions for Enterprise Beans
TheLife Cyclesof Enterprise Beans

The Life Cycle of a Stateful Session Bean

The Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean

The Life Cycle of aMessage-Driven Bean
Further Information

Getting Started with EnterpriseBeans..........

Creating the J2EE Application
Creating the Enterprise Bean
Creating the ConverterBean Enterprise Bean
Creating the Web Client
Coding the Web Client
Specifying the Enterprise Application’s Default URL
Deploying the J2EE Application
Running the Web Client
M odifying the J2EE Application
Modifying a Deployment Setting

SessonBean Examples

The CartBean Example Application
Creating the Cart EJB Project
Session Bean Interfaces
Building and Deploying the Application
The CartClient Application

The HelloService Web Service Example
Web Service Endpoint Interface
Statel ess Session Bean Implementation Class

115
116
116
117
118
118
119
120
120
121
122
123
123
124
125
127
128

130
130
130
133
133
135
135
136
137
137

139
140
147
150
151
153
154
154

Chapter 7:

Chapter 8:

CONTENTS

Running the HellowWebClient Application
Other Enterprise Bean Features

Accessing Environment Entries

Comparing Enterprise Beans

Passing an Enterprise Bean's Object Reference
Using the Timer Service

Creating Timers

Canceling and Saving Timers

Getting Timer Information

Transactions and Timers

The TimerSessionBean Example
Handling Exceptions

Bean-M anaged Persistence Examples.............

The SavingsAccountBean Example
Creating the SavingsA ccount Project
Entity Bean Class
Home Interface
Remote Interface
Running the SavingsAccount Example
Creating the Sample Database

M apping Table Relationships for Bean-M anaged Persistence
One-to-One Relationships
One-to-Many Relationships
Many-to-Many Relationships

Primary Keysfor Bean-M anaged Persistence
The Primary Key Class
Primary Keysin the Entity Bean Class
Getting the Primary Key

Container-Managed Persistence Examples.

Overview of the Roster Module
Creating the Roster EJB Module
Creating the Project
Creating the Database Tables
Generating the CMP Entity Beans
The Player Bean Code
Entity Bean Class
Refactoring Entity Bean Methods

156
156
156
158
158
159
159
160
161
161
162
164

167
168
169
182
184
185
185
187
188
192
201
204
204
206
207

209
210
211
211
213
213
214
223

vii

viii

Chapter 9:

A Message-Driven Bean Example

CONTENTS

Loca Home Interface
Local Interface

Creating the Roster Bean Session Bean
Method Invocationsin the Roster M odule

Creating a Player

Adding a Player to a Team
Removing a Player

Dropping a Player from a Team
Getting the Players of a Team
Getting a Copy of a Team’s Players
Finding the Players by Position
Getting the Sports of a Player

Building and Running the Roster Example

Building and Deploying the EJB Module
Running the Client Application

Primary Keysfor Container-Managed Persistence

The Primary Key Class

Advanced CMP Topics: The Order Example

Structure of Order

Bean Relationshipsin Order

Primary Keysin Order’s Entity Beans

Entity Bean Mapped to More Than One Database Table
Finder and Selector Methods

Using Home Methods

Cascade Deletesin Order

BLOB and CLOB Database Typesin Order

Building and Running the Order Example

Example Application Overview
The SimpleM essageClient Application

Creating the SimpleM essageClient application

The Message-Driven Bean

Creating the SimpleMessage EJB Module
Creating the SimpleM essageM DB

The gjbCreate and ejbRemove Methods
The onMessage Method

Building and Deploying SimpleM essage M odule

Building and Deploying the Application
Running the Client

224
225
226
228
228
230
231
232
233
235
236
238
239
240
240
241
242
244
244
245
247
250
250
250
251
251
252

255
256
256
259
259
260
261
261
263
263
264

CONTENTS

Removing the Administered Objects

CONTENTS

About This Tutorial

T HE J2EE™ 1.4 Tutorial is a guide to developing enterprise applications for
the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here we cover all the
things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial

This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.1 2005Q1.

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point isto work through

al the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et a., (Addison-Wesley, 2000).

About the Examples

This section tells you everything you need to know to install, build, and run the
examples.

Xi

Xii

ABOUT THIS TUTORIAL

Required Software

Tutorial Bundle

The tutorial example source is contained in the tutorial bundle. If you are view-
ing this online, you need to download tutorial bundle from:

http://www.netbeans.org/files/documents/4/441/j 2ectutorial 14.zip

After you have installed the tutorial bundle, the example source code is in the
<INSTALL>/j2eetutorial 14/examples/ directory.

NetBeans|DE 4.1

The tutorial examples are developed and built using the 4.1 release of the Net-
Beans Integrated Development Environment (IDE). The IDE is the first open
source IDE to support the new J2SE 5.0 "Tiger" language features, and is the
first IDE to base its project system entirely on Apache Ant. This robust open
source Java IDE has everything that you need to develop, build, and deploy
cross-platform J2EE applications straight out of the box.

When you download the NetBeans IDE, you get a modular, standards-based
development environment with all the key functionality in one download, rather
than a series of additional plug-ins. Write, compile, debug and deploy Java pro-
grams for the Solaris, Windows, Linux and Macintosh platforms. Download it
from:

http://www.netbeans.org

Application Server

The Sun Java System Application Server Platform Edition 8.1 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2_06 or higher. If you
already have a copy of the 2SE SDK, you can download the Application Server
bundled with the IDE from:

http://www.netbeans.info/downl oads

http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#sdk

ABOUT THIS TUTORIAL

Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,
» Select the Don’'t Prompt for Admin User Name radio button. Thiswill save
the user name and password so that you won't need to provide them when

performing administrative operations with the IDE. You will still have to
provide the user name and password to log in to the Admin Console.

* Notethe HTTP port at which the server isinstalled. This tutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port or if you decide to
changeit yourself, you will need to update the configuration files for some
of the tutorial examplesto reflect the correct port.

Building the Examples

The tutorial examples are distributed with IDE projects. Directions for building
the examples are provided in each chapter.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examplesis stored in the follow-
ing structure under each application directory:

* build.xml: build file

» c: Java source of servlets and JavaBeans components; tag libraries

* web: JSP pages and HTML pages, tag files, and images

* nbproject: IDE project files
The build files (build.xml) distributed with the examples contain targets that you

can use from the IDE to create a build subdirectory and to copy and compilefiles
into that directory.

Further Information

This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

Xiii

Xiv

ABOUT THIS TUTORIAL

For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/817-6092.

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide at http://docs.sun.com/db/doc/817-6087 for information about devel oper features
of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about administering
the Application Server.

For information about the PointBase database included with the Application
Server see the PointBase web site at www.pointbase.com.

For information about the IDE see the NetBeans site at www.netbeans.org.

How to Print This Tutorial

To print thistutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader isinstalled on your system.
2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions

Table 1 lists the typographical conventions used in this tutorial.

Tablel Typographical Conventions

Font Syle Uses

italic Emphasis, titles, first occurrence of terms

URLSs, code examples, file names, path names, tool names,
monospace application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variablesin code, file paths, and URLs

<italic monospace> User-selected file path components

http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6087
http://docs.sun.com/db/doc/817-6088
http://www.pointbase.com
http://www.pointbase.com
J2EETutorial.pdf

ABOUT THIS TUTORIAL

Menu selections indicated with the right-arrow character —, for example,
First—Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Feedback

To send comments, broken link reports, errors, suggestions, and questions about
this tutorial, please write to nbdocs_feedback@usersguide.netbeans.org.

XV

http://www.pointbase.com

XVi ABOUT THIS TUTORIAL

Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and thereby leverage the speed, security, and reli-
ability of server-side technology. If you are aready working in this area, you
know that in the fast-moving and demanding world of e-commerce and informa-
tion technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, the Java™ 2
Platform, Enterprise Edition (J2EE™) provides a component-based approach to
the design, development, assembly, and deployment of enterprise applications.
The J2EE platform offers a multitiered distributed application model, reusable
components, a unified security model, flexible transaction control, and web ser-
vices support through integrated data interchange on Extensible Markup Lan-
guage (XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than
ever, but also your platform-independent J2EE component-based solutions are
not tied to the products and application programming interfaces (APIs) of any
one vendor. Vendors and customers enjoy the freedom to choose the products
and components that best meet their business and technological requirements.

This tutorial uses examples to describe the features and functionalities available
in the J2EE platform version 1.4 for devel oping enterprise applications. Whether
you are a new or an experienced developer, you should find the examples and
accompanying text a valuable and accessible knowledge base for creating your
own solutions.

OVERVIEW

If you are new to J2EE enterprise application devel opment, this chapter is agood
place to start. Here you will review development basics, learn about the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distributed Multitiered Applications

The J2EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica-
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1-1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1-1 are presented in
J2EE Components (page 3).

 Client-tier components run on the client machine.

» Web-tier components run on the J2EE server.

» Business-tier components run on the J2EE server.

» Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Fig-
ure 1-1, J2EE multitiered applications are generally considered to be three-tiered
applications because they are distributed over three locations: client machines,
the J2EE server machine, and the database or legacy machines at the back end.
Three-tiered applications that run in this way extend the standard two-tiered cli-
ent and server model by placing a multithreaded application server between the
client application and back-end storage.

J2EE COMPONENTS

J2EE J2EE
Application 1 Application 2
Application Dynamic Client Client
Cliant HTML Pages Tier Machine
Web
Tier J2EE
Sorver
Machine
Enterprise Business
Beans Tier
Database
'IFEIEF:‘ Server
Machine

Figure1-1 Multitiered Applications

J2EE Components

J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The
J2EE specification defines the following J2EE components:

» Application clients and applets are components that run on the client.

« Java Servlet and JavaServer Pages™ (JSP™) technology components are
web components that run on the server.

» Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-
ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, are verified to be well formed and in compli-
ance with the J2EE specification, and are deployed to production, where they are
run and managed by the J2EE server.

OVERVIEW

J2EE Clients

A J2EE client can be aweb client or an application client.

Web Clients

A web client consists of two parts: (1) dynamic web pages containing various
types of markup language (HTML, XML, and so on), which are generated by
web components running in the web tier, and (2) a web browser, which renders
the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.
When you use athin client, such heavyweight operations are off-loaded to enter-
prise beans executing on the J2EE server, where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies.

Applets

A web page received from the web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine installed in the web browser. However,
client systems will likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program
because no plug-ins or security policy files are needed on the client systems.
Also, web components enable cleaner and more modular application design
because they provide a way to separate applications programming from web
page design. Personnel involved in web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to
handle tasks that require aricher user interface than can be provided by amarkup
language. It typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line inter-
faceiscertainly possible.

J2EE CLIENTS

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open
an HTTP connection to establish communication with a servlet running in the
web tier.

The JavaBeans™ Component Architecture

The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans components) to manage the data flow
between an application client or applet and components running on the J2EE
server, or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have properties and have get and set methods for
accessing the properties. JavaBeans components used in this way are typically
simple in design and implementation but should conform to the naming and
design conventions outlined in the JavaBeans component architecture.

J2EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, asin the case of aclient running in a browser, by going through JSP
pages or servlets running in the web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

OVERVIEW

Cliant Tier

Web Browser
Web Pages,
Applets, and
Optional JavaBeans
Components

- =

Web Tier)
Business
Tier
Application Cllent
and Optlonal
JavaBeans
Components

J2EE Server

Figure1-2 Server Communications

Web Components

J2EE web components are either servlets or pages created using JSP technology
(JSP pages). Serviets are Java programming language classes that dynamically
process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static con-
tent.

Static HTML pages and applets are bundled with web components during appli-
cation assembly but are not considered web components by the J2EE specifica
tion. Server-side utility classes can also be bundled with web components and,
like HTML pages, are not considered web components.

As shown in Figure 1-3, the web tier, like the client tier, might include a Java-
Beans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components

Business code, which is logic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1-4 shows how an enterprise bean receives
data from client programs, processes it (if necessary), and sends it to the enter-

BUSINESS COMPONENTS

prise information system tier for storage. An enterprise bean also retrieves data
from storage, processesit (if necessary), and sendsit back to the client program.

Weh Tier

Applats, and

Optional JavaBeans JSP Pages SHas .
Components Serviels i ELUEl Business
Companents Ti
{Optional) 1er

Application Cllent

and Optlonal
JavaBeans

Components

J2EE Server

Figure 1-3 Web Tier and J2EE Applications

Business
Tier EIS Tier
Web Browaer -
A ﬂ“ i
an | i
ﬂptﬁl d@:ﬁna JSP Pages B javaseans fff Loty Beans Dﬂm‘:’:ﬂ
omponen Serviels c;;;}np%%m?;s 'ﬁ:ffi‘;';) o
Application Cllent : Bedans Sys ETE
and Optional =
JavaBeans
Components

J2EE Server
Figure14 Businessand EIS Tiers

There are three kinds of enterprise beans. session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with acli-
ent. When the client finishes executing, the session bean and its dataare gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean datais saved. A message-driven bean combines fea-

OVERVIEW

tures of a session bean and a Java Message Service (JMS) message listener,
allowing a business component to receive JM S messages asynchronously.

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enter-
prise infrastructure systems such as enterprise resource planning (ERP), main-
frame transaction processing, database systems, and other legacy information
systems. For example, J2EE application components might need access to enter-
prise information systems for database connectivity.

J2EE Containers

Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because businesslogic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yoursdlf, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a web component,
enterprise bean, or application client component can be executed, it must be
assembled into a J2EE module and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, including ser-
vices such as security, transaction management, Java Naming and Directory

CONTAINER TYPES

Interface™ (IJNDI) lookups, and remote connectivity. Here are some of the high-
lights:

» The J2EE security model letsyou configure aweb component or enterprise
bean so that system resources are accessed only by authorized users.

» The J2EE transaction model |ets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

» JINDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access naming and directory services.

» The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it asif it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application com-
ponents within the same J2EE application can behave differently based on where
they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environ-
ment and another level of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in section JREE 1.4
APIs (page 15). Although data persistence is a nonconfigurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

Container Types

The deployment process installs J2EE application components in the J2EE con-
tainersillustrated in Figure 1-5.

OVERVIEW

J2EE Server

f/'...I-_—. r/_,.l—_—.
‘ Serviet N JSP Page

Web Container

Database

Application
plEllm-rl

Application ,/H_ - I,.""'H_ -
Client [Enterprise I Enterprise
Container Bean Bean

Client Machine EJB Container.

Figure1-5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. web components and their container run on the J2EE server.

Application client container
M anages the execution of application client components. Application clients
and their container run on the client.

Applet container
M anages the execution of applets. Consists of aweb browser and Java Plug-
in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange datawith calling clients. The J2EE

XML

platform provides the XML APIs and tools you need to quickly design, develop,
test, and deploy web services and clients that fully interoperate with other web
services and clients running on Java-based or non-Java-based platforms.

To write web services and clients with the 2EE XML APIs, al you do is pass
parameter data to the method calls and process the data returned; or for docu-
ment-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed because the XML AP
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XM L-based transport
protocols. These XML -based standards and protocols are introduced in the fol-
lowing sections.

The trandation of data to a standardized XML-based data stream is what makes
web services and clients written with the 2EE XML APIs fully interoperable.
This does not necessarily mean that the data being transported includes XML
tags because the transported data can itself be plain text, XML data, or any kind
of binary data such as audio, video, maps, program files, computer-aided design
(CAD) documents and the like. The next section introduces XML and explains
how parties doing business can use XML tags and schemas to exchange datain a
meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data.
When XML datais exchanged between parties, the parties are free to create their
own tags to describe the data, set up schemas to specify which tags can be used
in a particular kind of XML document, and use XML stylesheets to manage the
display and handling of the data.

For example, a web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own
stylesheets to handle the data in away that best suits their needs. Here are exam-
ples:

* One company might put XML pricing information through a program to
translate the XML to HTML so that it can post the priceliststo itsintranet.

A partner company might put the XML pricing information through atool
to create a marketing presentation.

* Another company might read the XML pricing information into an appli-
cation for processing.

n

12

OVERVIEW

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and web services, al running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request-and
response standard for sending messages over the Internet, and SOAPisan XML-
based protocol that follows the HTTP request-and-response model.

The SOAP portion of atransported message handles the following:

» Defines an XML-based envelope to describe what is in the message and
how to process the message

* Includes XML-based encoding rules to express instances of application-
defined data types within the message

» Defines an XML-based convention for representing the request to the
remote service and the resulting response

WSDL Sandard Format

The Web Services Description Language (WSDL) is a standardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and ways to communicate with the service.
WSDL service descriptions can be stored in UDDI registries or published on the
web (or both). The Sun Java System Application Server Platform Edition 8 pro-
vides a tool for generating the WSDL specification of a web service that uses
remote procedure calls to communicate with clients.

UDDI and ebXML Sandard For mats

Other XML -based standards, such as Universal Description, Discovery and Inte-
gration (UDDI) and ebXML, make it possible for businesses to publish informa-
tion on the Internet about their products and web services, where the information
can be readily and globally accessed by clients who want to do business.

PACKAGING APPLICATIONS

Packaging Applications

A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard
Java Archive (JAR) file with an . ear extension. Using EAR files and modules
makes it possible to assemble a number of different J2EE applications using
some of the same components. No extra coding is needed; it is only a matter of
assembling (or packaging) various J2EE modules into J2EE EAR files.

An EAR file (see Figure 1-6) contains J2EE modules and deployment descrip-
tors. A deployment descriptor isan XML document with an . xm extension that
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed
without the need to modify the source code. At runtime, the J2EE server reads
the deployment descriptor and acts upon the application, module, or component
accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE
deployment descriptor is defined by a J2EE specification and can be used to con-
figure deployment settings on any J2EE-compliant implementation. A runtime
deployment descriptor is used to configure J2EE implementation-specific
parameters. For example, the Sun Java System Application Server Platform Edi-
tion 8 runtime deployment descriptor contains information such as the context
root of a web application, the mapping of portable names of an application’s
resources to the server’s resources, and Application Server implementation-spe-
cific parameters, such as caching directives. The Application Server runtime
deployment descriptors are named sun- moduleType. xni and are located in the
same directory as the J2EE deployment descriptor.

13

14

OVERVIEW

Assambly
Root

e P —

Wab Module EJB Module

. Application Resource
J \-/—I Cllent Module @ Adapter Madule

application.xml

sun-appllcation.xmili

Figure1-6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. An enterprise bean
module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A J2EE module without an appli-
cation deployment descriptor can be deployed as a stand-alone module. The four
types of J2EE modules are as follows:

EJB modules, which contain class files for enterprise beans and an EJB
deployment descriptor. EJB modules are packaged as JAR files with a
.j ar extension.

Web modules, which contain servlet classfiles, JSP files, supporting class
files, GIF and HTML files, and a web application deployment descriptor.
Web modules are packaged as JAR fileswith a. war (web archive) exten-
sion.

Application client modules, which contain class files and an application
client deployment descriptor. Application client modules are packaged as
JAR fileswitha.jar extension.

Resource adapter modules, which contain al Java interfaces, classes,
native libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 19) for a particular EIS.
Resource adapter modules are packaged as JAR files with an .rar
(resource adapter archive) extension.

J2EE 1.4 APIs

J2EE 1.4 APIs

Figure 1-7 illustrates the availability of the J2EE 1.4 platform APIs in each
J2EE container type. The following sections give a brief summary of the tech-
nologies required by the J2EE platform and the J2SE enterprise APIs that would
be used in J2EE applications.

f Applet Web Container EJE Container
Contalner

P i —

r Sarv|at

—

4 Applet

Application
Cllent Contalner,

fip]:llic:ﬂtinn
Cliant

Database

B Hew in J2EE 1.4
Figure1-7 J2EE Platform APIs

Enterprise JavaBeans Technology

An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is a body of
code having fields and methods to implement modules of business logic. You
can think of an enterprise bean as a building block that can be used alone or with
other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans: session beans,
entity beans, and message-driven beans. Enterprise beans often interact with
databases. One of the benefits of entity beansisthat you do not have to write any
SQL code or use the IDBC™ API (see IDBC API, page 19) directly to perform

15

16

OVERVIEW

database access operations; the EJB container handles this for you. However, if
you override the default container-managed persistence for any reason, you will
need to use the JIDBC API. Also, if you choose to have a session bean access the
database, you must use the JIDBC API.

Java Servlet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A serviet
class extends the capabilities of servers that host applications that are accessed
by way of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend the applica-
tions hosted by web servers.

JavaServer Pages Technology

JavaServer Pages™ (JSP™) technology lets you put snippets of servliet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static data (which can be expressed in any text-based
format such as HTML, WML, and XML) and JSP elements, which determine
how the page constructs dynamic content.

Java M essage Service API

The Java Message Service (JMS) API is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java Transaction API

The Java Transaction APl (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cationsthat are viewing datawill see the updated data after each database read or
write operation. However, if your application performs two separate database
access operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

JAVAMAIL API

JavaMail API

J2EE applications use the JavaMail ™ API to send email notifications. The Java-
Mail APl has two parts. an application-level interface used by the application
components to send mail, and a service provider interface. The J2EE platform
includes JavaMail with a service provider that allows application components to
send Internet mail.

JavaBeans Activation Framewor k

The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. JAF provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

Java API for XML Processing

The Java APl for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML (SAX),
and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser or XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
thisURL: ht t p: / / waww. w3. or g/ XML/ Schenma.

Java API for XML-Based RPC

The Java API for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTP, so client programs can make XML -based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL, so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Java-based or non-Java-based platforms
such as .NET. For example, based on the WSDL document, aVisual Basic .NET
client can be configured to use aweb service implemented in Java technology, or
aweb service can be configured to recognize a Visual Basic .NET client.

17

http://www.w3.org/XML/Schema

18

OVERVIEW

JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HTTP with a Java tech-
nology version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols to establish basic or mutual authentication. SSL and TL S ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is a measured way to verify whether a party is eligible and able to
access certain information as away to protect against the fraudulent use of a sys-
tem or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
it'svery important to configure a JAX-RPC web service to protect datain transit.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is alow-level API on which
JAX-RPC depends. SAAJ enables the production and consumption of messages
that conform to the SOAP 1.1 specification and SOAP with Attachments note.
Most developers do not use the SAAJ API, instead using the higher-level JAX-
RPC API.

Java API for XML Registries

The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the web. JAXR supports the ebXML Registry and Repos-
itory standards and the emerging UDDI specifications. By using JAXR, develop-
ers can learn a single APl and gain access to both of these important registry
technologies.

Additionally, businesses can submit material to be shared and search for material
that others have submitted. Standards groups have devel oped schemas for partic-
ular kinds of XML documents; two businesses might, for example, agree to use
the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
accessit.

J2EE CONNECTOR ARCHITECTURE

J2EE Connector Architecture

The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systemsthat can be plugged in to any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager of the EIS. Because a resource adapter is
specific to its resource manager, typically there is adifferent resource adapter for
each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector architecture
into the J2EE platform can be exposed as XML-based web services by using
JAX-RPC and J2EE component models. Thus JAX-RPC and the J2EE Connec-
tor architecture are complementary technologies for enterprise application inte-
gration (EAI) and end-to-end business integration.

JDBC API

The JDBC API lets you invoke SQL commands from Java programing language
methods. You use the JDBC API in an enterprise bean when you override the
default container-managed persistence or have a session bean access the data
base. With container-managed persistence, database access operations are han-
dled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from aservlet or
a JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts: an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Naming and Directory Interface

The Java Naming and Directory Interface™ (IJNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for

19

20

OVERVIEW

objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of nhamed Java abject.

J2EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI haming environment. A naming environment
alows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment
and providesit to the component as a INDI naming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates aj avax. nami ng. I ni ti al Cont ext object and looks
up the environment naming context in Initial Context under the name
j ava: conp/ env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA User Tr ansact i on objects,
are stored in the environment naming context, j ava: conp/ env. The J2EE plat-
form allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC Dat aSour ce objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontext j ava: conp/ env/ ej b, and JDBC Dat aSour ce references in the sub-
context j ava: conp/ env/ j dbc.

Because JNDI is independent of any specific implementation, applications can
use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This alows
J2EE applications to coexist with legacy applications and systems. For more
information on JNDI, see The JNDI Tutorial:

http://java. sun. conf products/jndi/tutorial/index. htmn

Java Authentication and Authorization
Service

The Java Authentication and Authorization Service (JAAS) provides away for a
J2EE application to authenticate and authorize a specific user or group of users
torunit.

http://java.sun.com/products/jndi/tutorial/index.html

SIMPLIFIED SYSTEMS INTEGRATION

JAAS is a Java programing language version of the standard Pluggable Authen-
tication Module (PAM) framework, which extends the Java 2 Platform security
architecture to support user-based authorization.

Simplified Systems Integration

The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but instead by trying to outdo each other in
providing products and services that benefit customers, such as better perfor-
mance, better tools, or better customer support.
The J2EE APIs enable systems and applications integration through the follow-
ing:

» Unified application model across tiers with enterprise beans

« Simplified request-and-response mechanism with JSP pages and servlets

» Reliable security model with JAAS

» XML-based datainterchangeintegration with JAXP, SAAJ, and JAX-RPC

« Simplified interoperability with the J2EE Connector architecture

» Easy database connectivity with the JDBC API

» Enterprise application integration with message-driven beans and JMS,

JTA, and INDI

You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice, by Rick Cattell and Jim
Inscore (Addison-Wesley, 2001):

http://java. sun. conlj 2ee/inpracti ce/ aboutthebook. ht m

Sun Java System Application Server
Platform Edition 8

The Sun Java System Application Server Platform Edition 8 is afully compliant
implementation of the J2EE 1.4 platform. In addition to supporting all the APIs
described in the previous sections, the Application Server includes a number of

http://java.sun.com/j2ee/inpractice/aboutthebook.html

22

OVERVIEW

J2EE technologies and tools that are not part of the J2EE 1.4 platform but are
provided as a convenience to the devel oper.

This section briefly summarizes the technologies and tools that make up the
Application Server, and instructions for starting and stopping the Application
Server, starting the Admin Console, starting depl oyt ool , and starting and stop-
ping the PointBase database server. Other chapters explain how to use the
remaining tools.

Technologies

The Application Server includes two user interface technologies—JavaServer
Pages Standard Tag Library and JavaServer™ Faces—that are built on and used
in conjunction with the J2EE 1.4 platform technol ogies Java servlet and JavaSer-

ver Pages.

JavaServer Pages Sandard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ asingle, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL hasiterator and conditional tags for handling flow control, tags for manip-
ulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

JavaServer Faces

JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as fol-
lows:

* A GUI component framework.

» A flexible model for rendering components in different kinds of HTML or
different markup languages and technologies. A Render er object gener-
ates the markup to render the component and converts the data stored in a
model object to types that can be represented in aview.

TooLs

» A standard Render Ki t for generating HTML/4.01 markup.

The following features support the GUI components:

All thisfunctionality is available via standard Java APls and XM L-based config-

Input validation

Event handling

Data conversion between model objects and components
Managed model object creation

Page navigation configuration

uration files.

Tools

The Application Server contains the tools listed in Table 1-1. All can be used
from the IDE. Basic usage information for many of the tools appears throughout
the tutorial. For detailed information, see the online help in the GUI tools and the
man pages at http: // docs. sun. com db/ doc/ 817- 6092 for the command-line
tools.

Table1-1 Application Server Tools

Component Description

A web-based GUI Application Server administration utility. Used to

Admin Console stop the Application Server and manage users, resources, and appli-
cations.

PointBase database An evaluation copy of the PointBase database server.

verifier A command-line tool to validate J2EE deployment descriptors.

wscompile

wsdeploy

A command-line tool to generate stubs, ties, serializers, and WSDL
files used in JAX-RPC clients and services.

A command-line tool to generate implementation-specific, ready-to-
deploy WAR files for web service applications that use JAX-RPC.

23

http://docs.sun.com/db/doc/817-6092

24

OVERVIEW

Registering the Application Server

To register the Application Server, you can use the IDE. Note that if you down-
loaded and installed the version of the IDE that comes bundled with the Applica-
tion Server, you do not have to perform this step. The IDE knows the location of
the bundled Application Server.

1. Inthe IDE, choose Tools— Server Manager from the main window.

2. Click Add Server. Select Sun Java Systems Application Server 8.1 and
give anameto the instance. Then click Next.

3. Specify the installation directory of the application server (for example,
C:\ Sun\ Appser ver) and click Next.

4. Select the location of alocal instance of the application server from the
L ocation combo box.

5. Optionally, enter your administrator username and password. If you do not
want to store the username and password in your IDE user directory, you
can leave these fields blank. The IDE will prompt you every time it needs
the information. Note that the default admi n password is adni nadmi n.

Sarting and Sopping the Application Server

To start and stop the Application Server, you can use the IDE. To start the Appli-
cation Server, open the IDE, go to the Runtime window (Ctrl-5), expand the
Servers node, right-click the Application Server’s node, and choose Start/Stop
Server. In the Server Status dialog box, click Start Server.

A domain is a set of one or more Application Server instances managed by one
administration server. Associated with a domain are the following:

» The Application Server’s port number. The default is 8080.

» The administration server’s port number. The default is 4848.

* Anadministration user name and password.

You specify these values when you install the Application Server. The examples
in this tutorial assume that you choose the default ports.

With no arguments, the IDE initiates the default domain, which is domainl. The
- -ver bose flag causes all logging and debugging output to appear on the termi-
nal window or command prompt (it will aso go into the server log, which is
located in <J2EE_ HOME>/ domai ns/ domai n1/ | ogs/ server. | og).

STARTING THE ADMIN CONSOLE

After the server has completed its startup sequence, you will see the following
output in the IDE’s Output window:

Domai n domai nl started.

To stop the Application Server, click Stop Server in the Server Status dialog
box.When the server has stopped you will see the following output in the IDE's
Output window:

Domai n domai n1 st opped.

Sarting the Admin Console

To administer the Application Server and manage users, resources, and J2EE
applications, you use the Admin Console tool. The Application Server must be
running before you invoke the Admin Console. To start the Admin Console,
open the IDE, go to the Runtime window (Ctrl-5), expand the Servers node,
right-click the node for the Application Server, and choose View Admin Con-
sole.

Sarting and Stopping the PointBase Database
Server

The Application Server includes an evaluation copy of the PointBase database.

To start the PointBase database server, open the IDE and choose Tools—Point-
base Database— Start Local Pointbase Database from the main menu.

For information about the PointBase database included with the Application
Server see the PointBase web site at www. poi nt base. com

Debugging J2EE Applications

This section describes how to determine what is causing an error in your applica-
tion deployment or execution.

25

http://www.pointbase.com

26

OVERVIEW

Using the Server Log

One way to debug applications is to look at the server log in <J2EE_HOME>/
donmai ns/ domai n1/ | ogs/ server. | og. The log contains output from the Appli-
cation Server and your applications. You can log messages from any Java class
in your application with Syst em out . pri nt | n and the Java Logging APIs (doc-
umented a http://java. sun. conlj2se/ 1. 4. 2/ docs/ gui de/ util /| oggi ng/
i ndex. ht m) and from web components with the Ser vI et Cont ext . | og method.

You can also view the Server Log in the IDE. Open the IDE, go to the Runtime
window (Ctrl-5), expand the Servers node, right-click the node for the Applica-
tion Server, and choose View Server Log.

If you start the Application Server with the - -verbose flag, al logging and
debugging output will appear on the terminal window or command prompt and
the server log. If you start the Application Server in the background, debugging
information is only available in the log. You can view the server log with a text
editor or with the Admin Console log viewer. To use the log viewer:

1. Select the Application Server node.
2. Select the Logging tab.
3. Click the Open Log Viewer button. The log viewer will open and display
the last 40 entries.
If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

Using the NetBeans Debugger

The IDE uses the Sun Microsystems JPDA debugger to debug your programs.
When you start a debugging session, al of the relevant debugger windows
appear automatically at the bottom of your screen. You can debug an entire
project, any executable class, and any JUnit tests. The IDE also lets you debug
applications that are running on a remote machine by attaching the debugger to
the application process.

When you run or debug web applications, JSP pages, or servlets, you can aso
use the HTTP Monitor to monitor data flow. The HTTP Monitor appears by
default. The HTTP Monitor gathers data about HTTP requests that the serviet
engine processes. For each HTTP request that the engine processes, the monitor

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)

DEBUGGING J2EE APPLICATIONS

records data about the incoming request, the data states maintained on the server,
and the servlet context. You can view data, store data for future sessions, and
replay and edit previous requests.

When you start a debugging session in the IDE, the IDE compiles the files that
you are debugging, runs them in debug mode, and displays debugger output in
the Debugger windows. To start a debugging session, select the file that you
want to debug and choose one of the following commands from the Run menu:

» Debug Main Project (F5). Runs the main project until the first breakpoint
is encountered.

e Step Into (F7). Starts running the main project's main class and stops at the
first executable statement.

* Runto Cursor (F4). Starts a debugging session, runs the application to the
cursor location in the Source Editor, and pauses the application.

4.

27

28

OVERVIEW

2

Building Web Services
with JAX-RPC

JAX-RPC stands for Java API for XML-based RPC. JAX-RPC is a technology
for building web services and clients that use remote procedure calls (RPC) and
XML. Often used in a distributed client-server model, an RPC mechanism
enables clients to execute procedures on other systems.

In JAX-RPC, aremote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines the envel ope structure, encoding
rules, and conventions for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages (XML files) over
HTTPR

Although SOA P messages are complex, the JAX-RPC API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy (alocal object representing the service) and then simply invokes methods
on the proxy. With JAX-RPC, the developer does not generate or parse SOAP
messages. It is the JAX-RPC runtime system that converts the API calls and
responses to and from SOAP messages.

With JAX-RPC, clients and web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access aweb service that is not running on the

29

BUILDING WEB SERVICES WITH JAX-RPC

Javaplatform, and vice versa. Thisflexibility is possible because JAX-RPC uses
technol ogies defined by the World Wide Web Consortium (W3C): HTTPR, SOAR,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

Setting the Port

Severd files in the JAX-RPC examples depend on the port that you specified
when you installed the Sun Java System Application Server Platform Edition
8.1. The tutorial examples assume that the server runs on the default port, 8080.
If you have changed the port, you must update the port number in the following
files before building and running the JAX-RPC examples:

® <|INSTALL>/j 2eetutori al 14/ exanpl es/j axrpc/staticstub/src/
conf/Hello-staticclient-config.xmn

® <INSTALL>/j 2eetut ori al 14/ exanpl es/j axr pc/ dynam cpr oxy/ src/
conf/ Hel | o-dynami cclient-config.xm

* <|INSTALL>/j 2eetutori al 14/ exanpl es/ j axr pc/ webcl i -
ent / nbpr oj ect/ proj ect. xm

As explained earlier, you need to register the Sun Java System Application
Server Platform Edition 8.1 in the IDE before going any further with this chap-
ter.

Creating a Simple Web Service and Client
with JAX-RPC

This section shows how to build, deploy, and consume a simple web service.
You will learn about two types of web service clients in this section. Both are
static-stub clients, which means that they call the web service through a stub, a
local object that acts as a proxy for the remote service. The difference between
the two clients in this section is that one is portable, because it adheres to the
JEE 1.4 specification, while the other is not. A later section, Web Service
Clients (page 43), provides examples of additional JAX-RPC clients that access
the service. The code for the service is in <INSTALL>/ j 2eet ut ori al 14/ exam
pl es/ j axr pc/ hel | oservi ce. The portable client is in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axr pc/ webcl i ent and the client that

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC

is implementation-specific is in <INSTALL>/ j 2eet ut ori al 14/ exam
pl es/j axrpc/ staticstub.

Figure 2-1 illustrates how JAX-RPC technology manages communication
between aweb service and client.

HelloClient
Program

HelloService

Stubs Ties

JAX-APC 3 JAX-RPC
Runtime Runtime

Figure2-1 Communication Between a JAX-RPC Web Service and a Client

The starting point for developing a JAX-RPC web serviceis the service endpoint
interface. A service endpoint interface (SEI) is a Java interface that declares the
methods that a client can invoke on the service.

You run the wsconpi | e tool from the IDE to process the SEI and two configura-
tion files. Doing so generates the WSDL specification of the web service and the
stubs that connect a web service client to the JAX-RPC runtime. For reference
documentation on wsconpil e, see the Application Server man pages at
http://docs. sun. conf db/ doc/ 817- 6092.

Together, the wsconpi | e tool, the IDE, and the Application Server provide the
Application Server'simplementation of JAX-RPC.

These are the basic steps for creating the web service and client in the IDE:

1. Generate the SEI, the implementation class, and the interface configura-
tion file. Code the implementation class.

2. Compile the SEI and implementation class. During this step, the wscom
pi | e tool iscalled from the I DE to generate thefiles required to deploy the
service.

3. Package and deploy the WAR file. Thetie classes (which are used to com-
municate with clients) are generated by the Application Server during
deployment.

31

http://docs.sun.com/db/doc/817-6092

32

4,
5.

6.

BUILDING WEB SERVICES WITH JAX-RPC

Generate and code the client class and WSDL configuration file.

Compile the client class. During this step, the wsconpi | e tool is called
from the IDE to generate and compile the stub files.

Package and run the client class.

The sections that follow cover these stepsin greater detail.

Generating and Coding the Service Endpoint
| nterface and | mplementation Class

In this example, the service endpoint interface declares a single method named
sayHel | o. This method returns a string that is the concatenation of the string
Hel | o with the method parameter.

A service endpoint interface must conform to afew rules:

It extendsthej ava. rmi . Renot e interface.
It must not have constant declarations, such aspublic final static.

The methods must throw the j ava. r i . Renot eExcept i on or one of its
subclasses. (The methods may also throw service-specific exceptions.)

Method parameters and return types must be supported JAX-RPC types
(see Types Supported by JAX-RPC, page 42).

To generate the SEI, the implementation class, and the interface configuration
file, use the IDE as follows:

1

2.

Choose File—>New Project. In the Categories tree, choose Web. Under
Projects, choose Web Application. Click Next.

In the Project Name field, type hel | oservi ce. In the Project Location
field, browse to the location where al your projects are stored. In the
Server field, make sure that the Sun Java System Application Server Plat-
form Edition is selected. (If the Sun Java System Application Server is not
available in the Server field, you need to register it in the IDE. Choose
Tools—Server Manager to do so.) Click Finish.

. Right-click hel I oservi ce in the Projects window. Choose New—Web

Service. In the Web Service Name field, type Hel | o. In the Package field,
type hel | oser vi ce. Click Finish.

. Expand the Web Services node in the Projects window, right-click the

Hel | o node, and choose Add Operation. In the Name field, type say-
Hel l 0. Inthe Return Typefield, choose Stri ng.

BUILDING THE SERVICE 33

5. Click Add. Leavethe Typeasstri ng. Inthe Namefield, types. Click OK
and then click OK again.
6. Addpublic String message = "Hello "; belowtheHel | ol npl class
declaration.
7. Implement the sayHel | o operation by replacing the default r et urn nul |
withreturn message + s.
Expand the Source Packages node in the Projects window. Then expand the hel -
| oservi ce package node. In this example, the service endpoint interface that the
IDE generates for you is named Hel | oSEI . Double-click it in the Projects win-
dow to view it in the Source Editor:

package hel | oservice;

i mport java.rm . Renote;
i mport java.rni.RenoteException;

public interface Hell oSEl extends Renote {
public String sayHello(String s) throws RenoteException;

}

In addition to the interface, you' ll need the class that implements theinterface. In
this example, the implementation class is called Hel 1 ol npl . Double-click it in
the Projects window to view it in the Source Editor:

package hel | oservice;
public class Hellolnpl inplenents Hell oSEl {
public String nessage ="Hel | 0";

public String sayHello(String s) {
return nessage + s;

}

Building the Service

To build the hel | oservi ce, right-click the node in the Projects window and
choose Build Project. The Build Project command executes severa subtasks in
your Ant build script, the most important of which are the following:

e« conpile
e Hello_wsconpile

BUILDING WEB SERVICES WITH JAX-RPC

e dist

The compile Task

Thistask compilesHel | 0SEl . j ava and Hel | ol npl . j ava, writing the class files
to the bui | d/ web/ VEB- | NF/ cl asses subdirectory, which you can view in the
Files window (Ctrl-2).

The Hello wscompile Task

The Hel | o_wsconpi | e task runswsconpi | e, which creates the WSDL and map-
ping files. You can view them by going to the bui | d/ web/ WEB- | NF subdirectory
and the bui | d/ web/ VEB- | NF/ wsdl subdirectory in the Files window. The
WSDL file describes the web service and is used to generate the client stubs for
Static Stub Clients. The mapping file contains information that correlates the
mapping between the Java interfaces and the WSDL definition. It is meant to be
portable so that any J2EE-compliant deployment tool can use this information,
along with the WSDL file and the Java interfaces, to generate stubs and ties for
the deployed web services.

Thefiles created in this example are Hel | 0. wsdl and Hel | o- mappi ng. xm . The
Hel | o_wsconpi | e task runswsconpi | e with the following main arguments:

wsconpi | e
define="true"
nond assDir="${bui |l d. web. dir.real }/WEB- | NF/ wsdl "
mappi ng="${ bui | d. web. di r. real }/ WEB- | NF/ ${ Hel | 0. mappi ng}"
config="%{src.dir}/${Hello.config.nane}"
features="${wsconpile.service. Hello.features}"
sour ceBase="${bui | d. generat ed. di r}/ wsservice"

The def i ne option instructs wsconpi | e to create WSDL and mapping files. The
mappi ng option specifies the mapping file name. The other options specify vari-
ous properties that are set in the nbproj ect/ proj ect. properties file. The
wsconpi | e tool reads an interface configuration file that specifies information
about the SEIl. In this example, the configuration file is named Hel | o- con-
fig. xm and contains the following:

<?xm version="1.0" encodi ng="UTF-8"7?>
<configuration
xm ns="http://java. sun. coni xm /ns/jax-rpc/ri/config">
<service
nanme="Hel | 0" tar get Nanespace="urn: Hel | o/ wsdl "

BUILDING THE SERVICE

typeNanespace="urn: Hel | o/ t ypes"
packageName="hel | oservi ce" >
<interface nane="hel | oservi ce. Hel | oSEI "
servant Nanme="' hel | oservi ce. Hel |l ol npl ' </interface>
</ service>
</ configuration>

This configuration file tells wsconpile to create a WSDL file named
Hel | 0. wsdl with the following information:

* TheservicenameisHel | o.

* The WSDL target is urn:Hello/wsdl and the type namespace is
urn:Hello/types. The choice for what to use for the namespaces is up to you.
Therole of the namespaces is similar to the use of Java package names—
to distinguish names that might otherwise conflict. For example, a com-
pany can decide that all its Java code should be in the package
com wonbat . *. Similarly, it can aso decide to use the namespace
http://wonbat.com

e The SEl ishel | oservi ce. Hel | 0SEIl .

The packageNane attribute instructs wsconpi | e to put the service classes into
thehel | oser vi ce package.

Thedist Task

Thistask packages the service and the deployment descriptor into a WAR filein
thedi st folder, which you can view in the Files window.

Specifying the Endpoint Address

To access hel | oservi ce, the tutorial clients will specify this service endpoint
address URI:

http://1 ocal host: 8080/ hel | oservice/ Hel |l o

The/ hel | oser vi ce string is the context root of the servlet that implements the
service. The/ Hel | o string is the servlet alias. You aready set the context root
when you created the web application above. To specify the endpoint address,
set the alias as follows:

1. Right-click the project node, choose Properties, and then click Run in the
Project Properties dialog box.

35

36

BUILDING WEB SERVICES WITH JAX-RPC

2. Inthe Relative URL field, type/ Hel | o.

Deploying the Service
In the IDE, perform these steps:

1. In the main menu, choose Tools—Setup Wizard. Select your favorite
browser in the Web Browser drop-down and click Finish.

2. Inthe Projectswindow, right-click hel | oser vi ce and choose Run Project.

You can view the WSDL file of the deployed service by requesting the URL
http:/ /1 ocal host: 8080/ hel | oservi ce/ Hel | 0?WSDL in a web browser. Now
you are ready to create a client that accesses this service.

Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by expanding the Servers node
in the Runtime window, then the node for the server, then right-click the node for
the service, and choose Undeploy.

Satic Sub Clients

You will create a stand-alone program that calls the sayHel | o method of the
hel | oservi ce. It makes this call through a stub, a local object that acts as a
proxy for the remote service. Because the stub is created by wsconpi | e at devel-
opment time (as opposed to runtime), it is usually called a static stub. You can
runwsconpi | e from the IDE to generate the stub in one of two ways:

» J2EE Container-Generated
Thisstub is created by the server, using information gleaned from deploy-
ment descriptors generated in the IDE.

* |IDE-Generated
Thisstub is created manually in the IDE. Asaresult, it isimplementation-
specific, as discussed later in this chapter.

STATIC STUB CLIENTS

J2EE Container-Generated Satic Sub Client

To generate the static stub client, use the IDE as follows:

1. Choose File—>New Project. Under Categories, choose Web. Under
Projects, choose Web Application. Click Next.

2. Inthe Project Namefield, typeHel | od i ent Proj ect . Inthe Project Loca-
tion field, browse to the location where al your projects are stored. In the
Server field, make sure that the Sun Java System Application Server Plat-
form Edition 8.1 is selected. Click Finish.

3. Right-click Hel | odientProject in the Projects window. Choose
New—Web Service Client. In the WSDL URL field, specify the URL to
the web service:

http://1ocal host: 8080/ hel | oservi ce/ Hel | 0?WSDL

4. Click Retrieve WSDL to test the location. If the WSDL name is returned,
thetest has succeeded. In the Packagefield, typehel | ocl i ent servi ce. In
the Web Service Client Typelist, choose J2EE Container- Generated Static
Stub.

5. Right-click the Hel I oCl i ent Pr oj ect node and choose New—Servlet. In
the Name field, type Hel | oSer vl et . Inthe Packagefield, type webcl i -
ent. Click Next and click Finish.

6. Right-click within the pr ocessRequest method and choose Web Service
Client Resources—>Call Web Service Operation. Choose the sayHel | o
operation and click OK. Now fill out the skeleton code so that the content
of its<body> tagslooks as follows:

out. println("<body>");
String usernane = request. get Paraneter("usernane");
if (usernane != null && username.length() > 0) {
try {
out.println("<inmg src=\"duke.wavi ng.gi f\">");
out. println("<h2>");
out.println(getHell oSEl Port().sayHell o(usernane));
out.println("</h2>");
} catch(java.rm . RenoteException ex) {
ex. printStackTrace(out);

} else {

38

BUILDING WEB SERVICES WITH JAX-RPC

out.println("You didn't specify your nane.
");

}
out.println("back");
out. println("</body>");

7. Expand the project’s Web Pages node, double-click the default index jspfile,
and replace the <body> tags with the following code:

<body bgcol or="white">

<i ng src="duke.waving.gif">

<h2>Hel l o, ny nane is Duke. Wat's yours?</h2>

<f orm met hod="get" acti on="Hel | oServl et">
<i nput type="text" nane="usernane" size="25">

<input type="submit" val ue="Submt">
<i nput type="reset" val ue="Reset">

</forne

</ body>

8. GO to <INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axr pc/ webcl i ent / web
and copy the duke. wavi ng. gi f fileinto your project’sweb directory.

Building and Deploying the Static Stub Client
In the IDE, perform these steps:

1. In the Projects window, right-click the project node.

2. Choose Run Project.
This task invokes the web service client. When you run this task, the browser
opens, the application is displayed, and you can submit a name, and agreeting is
returned.

| DE-Generated Satic Sub Client

To build, package, and run the client, follow these steps:

1. Choose File—»>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axr pc/ stati cstub/, select the
project, and choose Open Project.

2. The project prompts you to set up alibrary named “jax-rpc”. The library
should contain JAR files that are needed by the project. Right-click the
project and choose Resolve Reference Prablems. Click Resolve. Click
New Library and name the library j ax-rpc. Click Add JAR/Folder and

STATIC STUB CLIENTS 39

navigate to thel i b directory in your application server installation. Select

activation.jar, domjar, j2ee.jar, jaxrpc-api.jar, jaxrpc-
inmpl.jar, jhall.jar, mail.jar, saaj-inpl.jar, xerceslnpl.jar
and click OK.

3. Inthe Projectswindow, right-click the project and choose Run Project. The
IDE builds, packages, and runs the project.

4. In the Output window, the client displays the following outpult:
Hel | o Duke!

Before it can invoke the remote methods on the stub, the client performs these
steps:
1. Creates a St ub object:
(Stub)(new Hel lo_Inpl (). getHell oSEl port())
The code in this method is implementation-specific because it relies on a
Hel I o_I npl object, which is not defined in the specifications. The
Hel I o_I npl class will be generated by wsconpi | e in the following sec-
tion.
2. Setsthe endpoint address that the stub uses to access the service:

stub. _setProperty
(javax. xm . rpc. St ub. ENDPO NT_ADDRESS PROPERTY, args[0]);

At runtime, the endpoint addressis passed to Hel | oQl i ent inargs[0] as
a command-line parameter, which the IDE gets from the end-
poi nt . address property in the build. properties file. This address
must match the one you set for the service in Specifying the Endpoint
Address (page 35).

3. Casts st ub to the service endpoint interface, Hel | 0SEl :

Hel | oSElI hell o = (Hel | oSEl) st ub;

Here is the full source code listing for the Hel | od i ent . j ava file, which is
located in the directory <INSTALL>/j 2eet ut ori al 14/ exanpl es/ j axr pc/ st at -
i cstub/src/:

package staticstub;
i mport javax.xm .rpc. Stub;
public class HelloCient {

private String endpoi nt Address;

BUILDING WEB SERVICES WITH JAX-RPC

public static void main(String[] args) {

System out . printl n("Endpoint address = " + args[0]);

try {
Stub stub = createProxy();

stub. _setProperty
(javax. xm . rpc. St ub. ENDPO NT_ADDRESS PROPERTY,
args[0]);
Hel | oSElI hell o = (Hel | oSEl) st ub;
Systemout. println(hello.sayHel | o("Duke!"));
} catch (Exception ex) ({
ex. printStackTrace();

}
}

private static Stub createProxy() {
/1 Note: Hello_Inpl is inplementation-specific.
return
(Stub) (new Hello_lInpl().getHelloSElPort());

Building the Satic Sub Client

To build the client, right-click its node in the Projects window and choose Build
Project. The Build Project command executes several subtasks in your Ant build
script, the most important of which are the following:

Running the Satic Sub Client

In the IDE, perform these steps:

1. Inthe Projects window, right-click the project.
2. Choose Run Project.

This task invokes the web service client. When you run this task, you should get
the following output:

Hel | o Duke!

TYPES SUPPORTED BY JAX-RPC

Types Supported by JAX-RPC

Behind the scenes, JAX-RPC maps types of the Java programming language to
XML/WSDL definitions. For example, JAX-RPC maps thej ava. | ang. Stri ng
class to the xsd: stri ng XML data type. Application developers don't need to
know the details of these mappings, but they should be aware that not every class
in the Java 2 Platform, Standard Edition (J2SE) can be used as a method param-
eter or return type in JAX-RPC.

J2SE SDK Classes

JAX-RPC supports the following J2SE SDK classes:

j ava. | ang. Bool ean
java. |l ang. Byte
j ava. | ang. Doubl e
j ava. | ang. Fl oat
java. | ang. I nt eger
java. |l ang. Long
java. | ang. Short
java.lang. String

j ava. mat h. Bi gDeci ma
j ava. mat h. Bi gl nt eger

java. net. URl

java. util. Cal endar
java.util.Date

Primitives
JAX-RPC supports the following primitive types of the Java programming lan-
guage:

bool ean
byte
doubl e
fl oat
int

| ong
short

4

42

BUILDING WEB SERVICES WITH JAX-RPC

Arrays

JAX-RPC aso supports arrays that have members of supported JAX-RPC types.
Examples of supported arrays are int[] and String[]. Multidimensiona
arrays, such asBi gbeci mal [][], are also supported.

Value Types

A value type is a class whose state can be passed between a client and a remote
service as a method parameter or return value. For example, in an application for
a university library, a client might call a remote procedure with a value type
parameter named Book, a class that contains the fields Ti t | e, Aut hor, and Pub-

l'isher.

To be supported by JAX-RPC, avalue type must conform to the following rules:

It must have a public default constructor.

It must not implement (either directly or indirectly) thej ava. rmi . Renot e
interface.

* Itsfields must be supported JAX-RPC types.

The value type can contain public, private, or protected fields. The field of a
value type must meet these requirements:

» A public field cannot be final or transient.
» A nonpublic field must have corresponding getter and setter methods.

Web Service Clients

This section shows how to create and run these types of clients:
» Dynamic proxy
» Dynamic invocation interface (DII)

When you run these client examples, they will access the MyHel | oSer vi ce that
you deployed in Creating a Simple Web Service and Client with JAX-
RPC (page 30).

DYNAMIC PROXY CLIENT

Dynamic Proxy Client

The client in the preceding section uses a static stub for the proxy. In contrast,
the client example in this section calls a remote procedure through a dynamic
proxy, a class that is created during runtime. Although the source code for the
IDE-generated static stub client relies on an implementation-specific class, the
code for the dynamic proxy client does not have this limitation, just like the
J2EE container-generated static stub.

This example resides in the <INSTALL>/j2eetutorial 14/ exam
pl es/ j axr pc/ dynani cproxy/ directory.

Coding the Dynamic Proxy Client

The Hel | oDProxyd i ent program constructs the dynamic proxy as follows:

1. Creates a Ser vi ce object named hel | oSer vi ce:

Service hell oService =
servi ceFactory. createServi ce(hel | oWsdl Url,
new QNane(nanmeSpaceUri, serviceNane));

A Service object is a factory for proxies. To create the Servi ce object
(hel I oServi ce), the program calls the createService method on
another type of factory, a Ser vi ceFact ory object.

The cr eat eSer vi ce method has two parameters: the URL of the WSDL
file and a QNarre object. At runtime, the client gets information about the
service by looking up its WSDL. In this example, the URL of the WSDL
file points to the WSDL that was deployed with Hel | oSer vi ce:

http://1ocal host: 8080/ hel | oservi ce/ Hel | 0?WSDL

A Quare object is a tuple that represents an XML qualified name. The
tuple is composed of a namespace URI and the local part of the qualified
name. In the QNane parameter of the cr eat eSer vi ce invocation, the local
part is the service name, Hel | oSer vi ce.

2. The program creates aproxy (myPr oxy) with atype of the service endpoint
interface (Hel 1 oSEl):

dynami cproxy. Hel | oSEI nyProxy =
(dynami cproxy. Hel | oSEl) hel | oSer vi ce. get Port (
new QNanme(naneSpacelri, portNane),
dynam cproxy. Hel | oSEl . cl ass);

BUILDING WEB SERVICES WITH JAX-RPC

The hel | oServi ce object is a factory for dynamic proxies. To create
myPr oxy, the program calls the get Port method of hel | oServi ce. This
method has two parameters. a QNane object that specifies the port name
and ajava. | ang. O ass object for the service endpoint interface (Hel -
| oSEl). The Hel | oSEI class is generated by wsconpi | e. The port name
(Hel 1 oSEI Port) is specified by the WSDL file.

Here is the listing for the Hell oDProxyCient.java file, located in the
<INSTALL>/j 2eet ut ori al 14/ exanpl es/j axr pc/ dynam cproxy/ src/ dynam
i cproxy directory:

package dynamni cproxy;

i mport java.net. URL;

i mport javax.xm .rpc. Service;

i mport javax.xm .rpc. JAXRPCExcepti on;
i mport javax.xm . namespace. QNane;

i mport javax.xnl .rpc. ServiceFactory;
i mport dynami cproxy. Hel | ol F;

public class Hell oDProxydient {

public static void main(String[] args) {

try {
String Ul String = args[0] + "?WsDL";
String nanmeSpaceUri = "urn: Hell o/ wsdl";
String serviceName = "Hello";

String portNanme = "Hel |l oSEl Port";

Systemout.printin("UlString =" + Ul String);
URL hel l oWdl Url = new URL(Url String);

Servi ceFactory serviceFactory =
Servi ceFact ory. newl nst ance() ;

Service hell oService =
servi ceFactory. createServi ce(hel | owsdl Url,
new QNane(naneSpacelri, serviceNane));

dynami cproxy. Hel | oSEI nyProxy =
(dynami cproxy. Hel | oSEl)
hel | oServi ce. get Port (
new QNane(nameSpaceUri, portNanme),
dynam cproxy. Hel | oSEl . cl ass);

System out . printl n(myProxy. sayHel | o("Buzz"));

DYNAMIC INVOCATION INTERFACE CLIENT

} catch (Exception ex) {
ex. printStackTrace();

}

Building and Running the Dynamic Proxy Client

Before performing the steps in this section, you must first create and deploy
Hel | oSer vi ce as described in Creating a Simple Web Service and Client with
JAX-RPC (page 30).

To build, package, and run the client, follow these steps:

1

If you have not aready opened the dynamicproxy project, choose
File>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axr pc/ dynani cproxy/, Select
the project, and choose Open Project Folder.

. If you have not aready created the JAX-RPC library, the project prompts

youto set it up. Thelibrary should contain JAR filesthat are needed by the
project. Right-click the project and choose Resolve Reference Problems.
Click Resolve. Click New Library and name the library j ax-rpc. Click
Add JAR/Folder and navigate to the 1i b directory in your application
server installation. Select activation.jar, domjar, j2ee.jar,
jaxrpc-api.jar, jaxrpc-inpl.jar, jhall.jar, mail.jar, saaj-
inpl.jar, xerceslnpl.jar andclick OK. Click Close.

3. Inthe Projectswindow, right-click the project and choose Run Project. The

IDE builds, packages, and runs the project.

4. In the Output window, the client displays the following outpult:

Hel |l o Buzz

Dynamic I nvocation Interface Client

With the dynamic invocation interface (DI1), a client can call aremote procedure
even if the signature of the remote procedure or the name of the service is
unknown until runtime. In contrast to a static stub or dynamic proxy client, a DIl
client does not require runtime classes generated by wsconpi | e. However, as
you'll seein the following section, the source code for a DIl client is more com-
plicated than the code for the other two types of clients.

46

BUILDING WEB SERVICES WITH JAX-RPC

This example is for advanced users who are familiar with WSDL documents.
(See Further Information, page 51.)

This example resides in the <INSTALL>/j2eetutorial 14/ exam
pl es/jaxrpc/diiclient/ directory.

Coding the DI Client

TheHel 1 oDl I O i ent program performs these steps:

1. Creates a Ser vi ce object:
Servi ce service =
factory. createServi ce(new QNarme(gnanmeService));
To get aser vi ce object, the program invokesthe cr eat eSer vi ce method
of a ServiceFactory object. The parameter of the createService
method is a QNane object that represents the name of the service, Hel | o.
The WSDL file specifies this name as follows:

<servi ce nane="Hel | 0" >

2. From the ser vi ce object, createsacal | aobject:
ane port = new QName(gnamePort);
Call call = service.createCall (port);
A cal | object supports the dynamic invocation of the remote procedures
of a service. To get a cal I object, the program invokes the Servi ce
object’s creat eCal I method. The parameter of createCal | IS a Quame
object that represents the service endpoint interface, Hel | oSEI . In the
WSDL file, the name of this interface is designated by the port Type ele-
ment:

<port Type nane="Hel | oSEl ">
3. Setsthe service endpoint address on the cal | object:
cal | . set Tar get Endpoi nt Address(args[0]);

In the WSDL file, this address is specified by the <soap: addr ess> ele-
ment.

4. Setsthese properties on the cal | object:

SOAPACTI ON_USE_PROPERTY
SCQAPACTI ON_URI _PROPERTY
ENCODI NG_STYLE_PROPERTY

To learn more about these properties, refer to the SOAP and WSDL docu-
ments listed in Further Information (page 51).

DYNAMIC INVOCATION INTERFACE CLIENT 47

5. Specifies the method's return type, name, and parameter:

Name QNAMVE_TYPE_STRI NG = new QNanme(NS_XSD, "string");
call.set Ret urnType(QNAME_TYPE_STRI NG) ;

cal | . set Oper ati onNanme(new QNane(BODY_NAMESPACE_VALUE,
"sayHel 1 0"));

call.addParaneter("String_1", OQNAME_TYPE_STRI NG
Par amet er Mode. I N) ;

To specify the return type, the program invokes the set Ret ur nType
method on the cal | object. The parameter of set Ret ur nType iS a QNanme
object that represents an XML string type.

The program designates the method name by invoking the set Oper a-
ti onNarme method with a QNarre object that represents sayHel | o.

To indicate the method parameter, the program invokes the addPar ane-
ter method on the cal | object. The addPar anet er method has three
arguments: a st ri ng for the parameter name (String_1), a QNane object
for the XML type, and a Par anet er Mode object to indicate the passing
mode of the parameter (I N).

6. Invokes the remote method on the cal I object:

String[] parans = { "Murphy" };

String result = (String)call.invoke(parans);

The program assigns the parameter value (Murphy) to a String array
(par ans) and then executes the i nvoke method with the stri ng array as
an argument.

Here is the listing for the Hellodient.java file, located in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axrpc/ dii/src/ directory:

package diiclient;

i mport javax.xm .rpc.Call;

i nport javax.xm .rpc. Service;

i mport javax.xm . rpc. JAXRPCExcepti on;
i mport javax.xm . namespace. QNane;

i mport javax.xm .rpc. ServiceFactory;

i mport javax.xm .rpc. Paranet er Mode;

public class HelloDiIdient {

private static String gnaneService = "Hello";
private static String gnanePort = "Hell oSEl";

BUILDING WEB SERVICES WITH JAX-RPC

private static String BODY_NAMESPACE_VALUE =
"urn: Hel | o/ wsdl ";
private static String ENCODI NG_STYLE PROPERTY =
"javax.xm . rpc. encodi ngstyl e. nanespace. uri";
private static String NS_XSD =
"http://ww. w3. org/ 2001/ XM_Schema" ;
private static String UR _ENCODI NG =
"http://schemas. xm soap. or g/ soap/ encodi ng/ ";

public static void main(String[] args) {

System out. println("Endpoint address = " + args[0]);

try {
ServiceFactory factory =

Servi ceFact ory. newl nst ance() ;
Service service =

factory. createService(

new QNane(gnameServi ce));

Nane port = new QNane(gnanePort);

Call call = service.createCall (port);
cal | . set Tar get Endpoi nt Address(args[0]);

call.setProperty(Call.SQAPACTI ON_USE_PROPERTY,

new Bool ean(true));
call.setProperty(Call.SQAPACTI ON_URI _PROPERTY

")

cal |l . setProperty(ENCODI NG_STYLE_PROPERTY,

URI _ENCODI NG ;
Nanme QNAME_TYPE_STRI NG =

new QNane(NS_XSD, "string");

call.set Ret urnType(QNAME_TYPE_STRI NG) ;

cal |l . set Qperati onNang(
new QNanme(BODY_NAMESPACE_VALUE, "sayHel | 0"));
call.addParaneter("String_1", ONAME_TYPE_STRI NG,
Par anmet er Mode. I N) ;
String[] parans = { "Mirph!" };

String result = (String)call.invoke(parans);
Systemout.printin(result);

} catch (Exception ex) {

WEB SERVICES | NTEROPERABILITY AND JAX-RPC

ex. printStackTrace();

Building and Running the DIl Client

Before performing the steps in this section, you must first create and deploy
Hel | oSer vi ce as described in Creating a Simple Web Service and Client with
JAX-RPC (page 30).

To build, package, and run the client, follow these steps:

1. If you have not already opened the DIIClient project, choose File—Open
Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ j axrpc/diiclient/, select the
project, and choose Open Project.

2. If you have not already created the JAX-RPC library, the project prompts
youto set it up. Thelibrary should contain JAR filesthat are needed by the
project. Right-click the project and choose Resolve Reference Problems.
Click Resolve. Click New Library and name the library j ax-rpc. Click
Add JAR/Folder and navigate to the 1i b directory in your application
server installation. Select activation.jar, domjar, jZ2ee.jar,
jaxrpc-api.jar, jaxrpc-inpl.jar, jhall.jar, mail.jar, saaj-
inpl.jar, xerceslnpl.jar andclick OK. Click Close.

3. Inthe Projectswindow, right-click the project and choose Run Project. The
IDE builds, packages, and runs the project.

4. In the Output window, the client displays the following output:

Hel I o Mur ph!

Web Services Interoperability and JAX-
RPC

JAX-RPC 1.1 supports the Web Services Interoperability (WS-1) Basic Profile
Version 1.0, Working Group Approval Draft. The WS-I Basic Profile is a docu-
ment that clarifies the SOAP 1.1 and WSDL 1.1 specifications in order to pro-
mote SOAP interoperability. For links related to WS-, see Further
Information (page 51).

49

50

BUILDING WEB SERVICES WITH JAX-RPC

To support WS-, JAX-RPC has the following features:

* Whenrunwiththe-f: wsi option, wsconpi | e verifiesthat aWSDL isWS-
I-compliant or generates classes needed by JAX-RPC services and clients
that are WS-I-compliant.

» The JAX-RPC runtime supports doc/literal and rpc/literal encodings for
services, static stubs, dynamic proxies, and DII.

You can set these properties by right-clicking a project, choosing Properties, and
clicking Web Services or web Service Clients.

Further Information

For more information about JAX-RPC and related technologies, refer to the fol-
lowing:

» JavaAPI for XML-based RPC 1.1 specification
http://java. sun. conf xm / downl oads/j axr pc. ht m
* JAX-RPC home
http://java. sun. com xm /j axrpc/

» Simple Object Access Protocol (SOAP) 1.1 W3C Note
http: // ww. w3. or g/ TR/ SOAP/

» Web Services Description Language (WSDL) 1.1 W3C Note
http://ww. w3. or g/ TR wsdl

« WS- Basic Profile 1.0

http://ww. ws-i.org

http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

3

SOAP with Attachments
API for Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP
messaging that goes on behind the scenes in JAX-RPC and JAXR implementa-
tions. Secondarily, it isan API that devel opers can use when they choose to write
SOAP messaging applications directly rather than use JAX-RPC. The SAAJAPI
allows you to do XML messaging from the Java platform: By simply making
method calls using the SAAJ API, you can read and write SOAP-based XML
messages, and you can optionally send and receive such messages over the Inter-
net (some implementations may not support sending and receiving). This chapter
will help you learn how to use the SAAJ API.

The SAAJ API conforms to the Simple Object Access Protocol (SOAP) 1.1
specification and the SOAP with Attachments specification. The SAAJ 1.2 spec-
ification defines the javax.xml.soap package, which contains the API for creating
and populating a SOAP message. This package has all the APl necessary for
sending request-response messages. (Request-response messages are explained
in SOAPConnection Objects, page 58.)

Note: The javax.xml.messaging package, defined in the Java API for XML Messaging
(JAXM) 1.1 specification, is not part of the J2EE 1.4 platform and is not discussed
in this chapter. The JAXM API is available as a separate download from http://
java.sun.com/xml/jaxm/.

53

http://java.sun.com/xml/jaxm/
http://java.sun.com/xml/jaxm/

SOAP WITH ATTACHMENTS APl FOR JAVA

This chapter starts with an overview of messages and connections, giving some
of the conceptual background behind the SAAJ API to help you understand why
certain things are done the way they are. Next, the tutorial shows you how to use
the basic SAAJ API, giving examples and explanations of the commonly used
features. The code examplesin the last part of the tutorial show you how to build
an application.

Overview of SAAJ

This section presents a high-level view of how SAAJ messaging works and
explains concepts in general terms. Its goal isto give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at SAAJ from two perspectives: messages and connections.

M essages

SAAJ messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the SAAJ AP, you can create XML messages that conform to the SOAP
1.1 and WS-| Basic Profile 1.0 specifications smply by making Java API calls.

The Sructure of an XML Document

An XML document has a hierarchical structure made up of elements, subele-
ments, subsubelements, and so on. You will notice that many of the SAAJ
classes and interfaces represent XML elements in a SOAP message and have the
word element or SOAP (or both) in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which isthe base class for al the classes and interfaces that repre-
sent XML elements in a SOAP message. There are also methods such as
SOAPElement.addTextNode, Node.detachNode, and Node.getValue, which you will see
how to use in the tutorial section.

MESSAGES

What Isin a Message?

The two main types of SOAP messages are those that have attachments and
those that do not.

M essages with No Attachments

The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, all the partslisted are required
to be in every SOAP message.

I. SOAP message
A. SOAP part
1. SOAP envelope
a. SOAP header (optional)
b. SOAP body

The SAAJAPI provides the SOAPMessage class to represent a SOAP message, the
SOAPPart classto represent the SOAP part, the SOAPEnvelope interface to represent
the SOAP envelope, and so on. Figure 3-1 illustrates the structure of a SOAP
message with no attachments.

Note: Many SAAJAPI interfaces extend DOM interfaces. In a SAAJ message, the
SOAPPart classisalso aDOM document. See SAAJand DOM (page 58) for details.

When you create a new SOAPMessage oObject, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage
object has a SOAPPart object that contains a SOAPEnvelope object. The SOAPEnve-
lope object in turn automatically contains an empty SOAPHeader object followed
by an empty SOAPBody object. If you do not need the SOAPHeader object, whichis
optional, you can delete it. The rationale for having it automatically included is
that more often than not you will need it, so it is more convenient to have it pro-
vided.

The SOAPHeader object can include one or more headers that contain metadata
about the message (for example, information about the sending and receiving
parties). The soAPBody object, which aways follows the SOAPHeader object if
there is one, contains the message content. If there is a SOAPFault object (see
Using SOAP Faults, page 80), it must be in the SOAPBody object.

56 SOAP WITH ATTACHMENTS APl FOR JAVA

S0APMessage (an XML document)

SO0APEnvelopa
———————
"S0APHesder (optional)

" Header
Header

F o

SOAPBody

XML Content
or S0APFaull

Figure3-1 SOAPMessage Object with No Attachments

M essages with Attachments

A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part must contain only XML content; asaresult, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So if, for example, you want your message to contain a binary file, your
message must have an attachment part for it. Note that an attachment part can
contain any kind of content, so it can contain datain XML format aswell. Figure
3-2 shows the high-level structure of a SOAP message that has two attachments.

MESSAGES

S0APMessage (an XML documeant)

Pr——————NS
SOAPEnvelope

'SO0APHeader (optional)

Headers (If any)

SOAPBody

LML Content
or SOAPFaukt

MIME Headers

i Content (XML or non-XBL})

MIME Headears

Content (XML or non-XBL)

Figure 3-2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJAPI provides the AttachmentPart class to represent an attachment part of
a SOAP message. A SOAPMessage object automatically has a SOAPPart object and
its required subelements, but because AttachmentPart objects are optional, you
must create and add them yourself. The tutorial section walks you through creat-
ing and popul ating messages with and without attachment parts.

57

58

SOAP WITH ATTACHMENTS APl FOR JAVA

If a SOAPMessage object has one or more attachments, each AttachmentPart object
must have a MIME header to indicate the type of data it contains. It may also
have additional MIME headers to identify it or to give its location. These head-
ers are optional but can be useful when there are multiple attachments. When a
SOAPMessage object has one or more AttachmentPart objects, its SOAPPart object
may or may not contain message content.

SAAJ and DOM

In SAAJ 1.2, the SAAJ APIs extend their counterparts in the org.w3c.dom pack-
age:
* The Node interface extends the org.w3c.dom.Node interface.

 The SoAPElement interface extends both the Node interface and the
org.w3c.dom.Element interface.

* The SOAPPart class implements the org.w3c.dom.Document interface.
» The Text interface extends the org.w3c.dom.Text interface.

Moreover, the SOAPPart of a SOAPMessage is also a DOM Level 2 Document and
can be manipulated as such by applications, tools, and libraries that use DOM.
For details on how to use DOM documents with the SAAJ API, see Adding Con-
tent to the SOAPPart Object (page 70) and Adding a Document to the SOAP

Body (page 71).

Connections

All SOAP messages are sent and received over a connection. With the SAAJ
AP, the connection is represented by a SOAPConnection object, which goes from
the sender directly to its destination. This kind of connection is called a point-to-
point connection because it goes from one endpoint to another endpoint. Mes-
sages sent using the SAAJ API are called request-response messages. They are
sent over a SOAPConnection object with the call method, which sends a message (a
reguest) and then blocks until it receives the reply (aresponse).

SOAPConnection Objects

The following code fragment creates the SOAPConnection object connection and
then, after creating and populating the message, uses connection to send the mes-
sage. As stated previously, al messages sent over a SOAPConnection object are

TUTORIAL

sent with the call method, which both sends the message and blocks until it
receives the response. Thus, the return value for the call method is the SOAPMes-
sage Object that is the response to the message that was sent. The request parameter
is the message being sent; endpoint represents where it is being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newlnstance();
SOAPConnection connection = factory.createConnection();

.. Il create arequest message and give it content

javanet.URL endpoint =
new URL ("http://fabul ous.com/gizmo/order");
SOAPM essage response = connection.call (request, endpoint);

Note that the second argument to the call method, which identifies where the
message is being sent, can be a string object or a URL object. Thus, the last two
lines of code from the preceding example could also have been the following:

String endpoint = "http://fabul ous.com/gizmo/order”;
SOAPM essage response = connection.call (request, endpoint);

A web service implemented for request-response messaging must return a
response to any message it receives. The response is a SOAPMessage object, just as
the request is a SOAPMessage object. When the request message is an update, the
response is an acknowledgment that the update was received. Such an acknow!-
edgment implies that the update was successful. Some messages may not require
any response at all. The service that gets such a message is till required to send
back a response because one is needed to unblock the call method. In this case,
the response is not related to the content of the message; it is simply a message to
unblock the call method.

Now that you have some background on SOAP messages and SOAP connec-
tions, in the next section you will see how to use the SAAJAPI.

Tutorial

This tutorial walks you through how to use the SAAJ API. Firgt, it covers the
basics of creating and sending a ssimple SOAP message. Then you will learn
more details about adding content to messages, including how to create SOAP
faults and attributes. Finally, you will learn how to send a message and retrieve

60

SOAP WITH ATTACHMENTS APl FOR JAVA

the content of the response. After going through this tutorial, you will know how
to perform the following tasks:

Creating and sending a simple message

Adding content to the header

Adding content to the SoAPPart object

Adding a document to the SOAP body

M ani pul ating message content using SAAJ or DOM APIs
Adding attachments

Adding attributes

Using SOAP faults

In the section Code Examples (page 85), you will see the code fragments from
earlier parts of the tutorial in runnable applications, which you can test yourself.

A SAAJ client can send reguest-response messages to web services that are
implemented to do request-response messaging. This section demonstrates how
you can do this.

Creating and Sending a Simple M essage

This section covers the basics of creating and sending a simple message and
retrieving the content of the response. It includes the following topics:

Creating a message

Parts of a message

Accessing elements of a message
Adding content to the body
Getting a SOAPConnection object
Sending a message

Getting the content of a message

Creating a Message

The first step isto create a message using a MessageFactory object. The SAAJ API
provides a default implementation of the MessageFactory class, thus making it easy

CREATING AND SENDING A SIMPLE MESSAGE

to get an instance. The following code fragment illustrates getting an instance of
the default message factory and then using it to create a message.

M essageFactory factory = MessageFactory.newlnstance();
SOAPM essage message = factory.createM essage();

As is true of the newlinstance method for SOAPConnectionFactory, the newlnstance
method for MessageFactory is static, so you invoke it by calling MessageFac-
tory.newlnstance.

Parts of a Message

A SOAPMessage object is required to have certain elements, and, as stated previ-
ously, the SAAJ API simplifies things for you by returning a new SOAPMessage
object that already contains these elements. So message, which was created in the
preceding line of code, automatically has the following:

I. A SOAPPat Object that contains
A. A SOAPEnvelope oObject that contains
1. Anempty SOAPHeader object
2. An empty SOAPBody object

The SOAPHeader object is optional and can be deleted if it is not needed. How-
ever, if there is one, it must precede the SOAPBody object. The SOAPBody object
can hold either the content of the message or a fault message that contains status
information or details about a problem with the message. The section Using
SOAP Faults (page 80) walks you through how to use SOAPFault objects.

Accessing Elements of a M essage

The next step in creating a message is to access its parts so that content can be
added. There are two ways to do this. The SOAPMessage object message, created in
the preceding code fragment, is the place to start.

The first way to access the parts of the message isto work your way through the
structure of the message. The message contains a SOAPPart object, So you use the
getSOAPPart method of message to retrieveit:

SOAPPart soapPart = message.getSOA PPart();

61

62

SOAP WITH ATTACHMENTS APl FOR JAVA

Next you can use the getEnvelope method of soapPart to retrieve the SOAPEnvelope
object that it contains.

SOAPEnvel ope envel ope = soapPart.getEnvel ope();

You can now use the getHeader and getBody methods of envelope to retrieve its
empty SOAPHeader and SOAPBody objects.

SOAPHeader header = envel ope.getHeader();
SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message
header and body directly, without retrieving the SOAPPart or SOAPEnvelope. To do
S0, use the getSOAPHeader and getSOAPBody methods of SOAPMessage:

SOAPHeader header = message.getSOA PHeader();
SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can deleteit.
(You will see more about headers later.) Because all SOAPElement objects, includ-
ing SOAPHeader objects, are derived from the Node interface, you use the method
Node.detachNode t0 delete header.

header.detachNode();

Adding Content to the Body

The sOAPBody object contains either content or a fault. To add content to the
body, you normally create one or more SOAPBodyElement objects to hold the con-
tent. You can also add subelements to the SOAPBodyElement objects by using the
addchildelement method. For each element or child element, you add content by
using the addTextNode method.

When you create any new element, you also need to create an associated Name
object so that it isuniquely identified. One way to create Name objectsis by using
SOAPEnvelope methods, so you can use the envelope variable from the earlier code
fragment to create the Name object for your new element. Another way to create
Name Objects is to use SOAPFactory methods, which are useful if you do not have
access to the SOAPEnvelope.

Note: The sOAPFactory class also lets you create XML elements when you are not
creating an entire message or do not have access to a complete SOAPMessage object.

CREATING AND SENDING A SIMPLE MESSAGE

For example, JAX-RPC implementations often work with XML fragments rather
than complete soAPMessage objects. Consequently, they do not have access to a
SOAPEnvelope object, and this makes using a SOAPFactory object to create Name objects
very useful. In addition to a method for creating Name objects, the SOAPFactory class
provides methods for creating Detail objects and SOAP fragments. You will find an
explanation of Detail objects in Overview of SOAP Faults (page 80) and Creating
and Populating a SOAPFault Object (page 82).

Name objects associated with SOAPBodyElement Or SOAPHeaderElement 0bjects must
be fully qualified; that is, they must be created with alocal name, a prefix for the
namespace being used, and a URI for the namespace. Specifying a namespace
for an element makes clear which one is meant if more than one element has the
same local name.

The following code fragment retrieves the SOAPBody object body from message,
uses a SOAPFactory to create a Name object for the element to be added, and adds a
new SOAPBodyElement Object to body.

SOAPBody body = message.getSOA PBody();
SOAPFactory soapFactory = SOAPFactory.newlnstance();
Name bodyName = soapFactory.createName(" GetL ast TradePrice",
"m", "http://wombat.ztrade.com”);
SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

At this point, body contains a SOAPBodyElement object identified by the Name
object bodyName, but there is still no content in bodyElement. Assuming that you
want to get a quote for the stock of Sun Microsystems, Inc., you need to create a
child element for the symbol using the addchildElement method. Then you need to
give it the stock symbol using the addTextNode method. The Name object for the
new SOAPElement object symboal isinitialized with only alocal name because child
elements inherit the prefix and URI from the parent element.

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol .addTextNode(" SUNW");

You might recall that the headers and content in a SOAPPart object must be in
XML format. The SAAJ API takes care of thisfor you, building the appropriate
XML constructs automatically when you call methods such as addBodyElement,
addChildelement, and addTextNode. Note that you can call the method addTextNode
only on an element such as bodyElement or any child elements that are added to it.
You cannot call addTextNode ON a SOAPHeader OF SOAPBody object because they
contain elements and not text.

63

SOAP WITH ATTACHMENTS APl FOR JAVA

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
xmins:SOAP-ENV ="http://schemas.xml soap.org/soap/envel ope/*>
<SOAP-ENV:Body>
<m:GetL astTradePrice xmlins:m="http://wombat.ztrade.com">
<symbol>SUNW</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let’s examine this XML excerpt line by line to see how it relates to your SAAJ
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

Hereisthe SAAJ code:

SOA PM essage message = messageFactory.createM essage();
SOAPHeader header = message.getSOA PHeader();
SOAPBody body = message.getSOAPBody();

Hereisthe XML it produces:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV ="http://schemas.xml soap.org/soap/envel ope/* >
<SOAP-ENV:Header/>
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Note that Envelope is the name of the element,
and SOAP-ENV is the namespace prefix. The interface SOAPEnvelope represents a
SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line is an example of an attribute for the SOAP envelope element.
Because a SOAP envel ope element always contains this attribute with this value,
a SOAPMessage Object comes with it automatically included. xmins stands for
“XML namespace,” and its value is the URI of the namespace associated with
Envelope.

CREATING AND SENDING A SIMPLE MESSAGE 65

The next line is an empty SOAP header. We could remove it by calling
header.detachNode after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in
SAAJ by a SOAPBody Object. The next step is to add content to the body.

Hereisthe SAAJ code:
Name bodyName = soapFactory.createName(" GetL ast TradePrice",

"m", "http://wombat.ztrade.com");
SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

Hereisthe XML it produces:

<m:GetL astTradePrice
xmlns:m="http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyElement bodyElement in your code represents.
GetLastTradePrice is its local name, m is its namespace prefix, and hitp:/
wombat.ztrade.com iS its namespace URI.

Hereisthe SAAJ code:

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol.addTextNode(" SUNW");

Hereisthe XML it produces:
<symbol>SUNW</symbol>

The string "SUNW" is the text node for the element <symbol>. This String object is
the message content that your recipient, the stock quote service, receives.

The following example shows how to add multiple SOAPEIement objects and add
text to each of them. The code first creates the SOAPBodyElement object
purchaseLineltems, which has a fully qualified name associated with it. That is, the
Name object for it has alocal name, a namespace prefix, and a namespace URI.
Asyou saw earlier, a SOAPBodyElement object is required to have afully qualified

SOAP WITH ATTACHMENTS APl FOR JAVA

name, but child elements added to it, such as SOAPElement objects, can have Name
objects with only the local name.

SOAPBody body = message.getSOAPBody();

Name bodyName = soapFactory.createName(* PurchaseLineltems”,
"PQO", "http://sonata.fruitsgal ore.com");

SOAPBodyElement purchaseLineltems =
body.addBodyElement(bodyName);

Name childName = soapFactory.createName(" Order");
SOAPElement order =
purchasel ineltems.addChildElement(childName);

childName = soapFactory.createName(" Product");
SOAPElement product = order.addChildElement(childName);
product.addTextNode("Apple");

childName = soapFactory.createName("Price");
SOAPElement price = order.addChildElement(childName);
price.addTextNode("1.56");

childName = soapFactory.createName(" Order");
SOAPElement order2 =
purchasel ineltems.addChildElement(childName);

childName = soapFactory.createName(" Product");
SOAPElement product2 = order2.addChildElement(childName);
product2.addTextNode(" Peach");

childName = soapFactory.createName("Price");
SOAPElement price2 = order2.addChil dElement(childName);
price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaseLineltems
xmlns:PO="http://sonata.fruitsgal ore.com">
<Order>
<Product>A pple</Product>
<Price>1.56</Price>
</Order>

<Order>

CREATING AND SENDING A SIMPLE MESSAGE

<Product>Peach</Product>
<Price>1.48</Price>
</Order>
</PO:PurchaseLineltems>

Getting a SOAPConnection Object

The SAAJAPI isfocused primarily on reading and writing messages. After you
have written a message, you can send it using various mechanisms (such as IMS
or JAXM). The SAAJ API does, however, provide a simple mechanism for
reguest-response messaging.

To send a message, a SAAJ client can use a SOAPConnection object. A SOAPCon-
nection object is a point-to-point connection, meaning that it goes directly from
the sender to the destination (usually a URL) that the sender specifies.

Thefirst step isto obtain a SOAPConnectionFactory object that you can useto create
your connection. The SAAJ APl makes this easy by providing the SOAPConnec-
tionFactory class with a default implementation. You can get an instance of this
implementation using the following line of code.

SOA PConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newlInstance();

Now you can use soapConnectionFactory t0 create a SOAPConnection object.

SOAPConnection connection =
soapConnectionFactory.createConnection();

You will use connection to send the message that you created.

Sending a M essage

A SAAJclient calls the SOAPConnection method call on a SOAPConnection object to
send a message. The call method takes two arguments: the message being sent
and the destination to which the message should go. This message is going to the
stock quote service indicated by the URL object endpoint.

javanet.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes’”);

SOAPM essage response = connection.call(message, endpoint);

67

68

SOAP WITH ATTACHMENTS APl FOR JAVA

The content of the message you sent is the stock symbol SUNW,; the SOAPMes-
sage object response should contain the last stock price for Sun Microsystems,
which you will retrieve in the next section.

A connection uses afair amount of resources, so it isagood ideato close a con-
nection as soon as you are finished using it.

connection.close();

Getting the Content of a M essage

Theinitial stepsfor retrieving a message's content are the same as those for giv-
ing content to a message: Either you use the Message object to get the SOAPBody
object, or you access the SOAPBody object through the SOAPPart and SOAPEnvelope
objects.

Then you access the SOAPBody object’s SOAPBodyElement object, because that is
the element to which content was added in the example. (In alater section you
will see how to add content directly to the SOAPPart object, in which case you
would not need to access the SOAPBodyElement object to add content or to retrieve

it.)

To get the content, which was added with the method SOAPEIement.addTextNode,
you call the method Nodegetvalue. Note that getvalue returns the value of the
immediate child of the element that calls the method. Therefore, in the following

code fragment, the getvalue method is called on bodyElement, the element on which
the addTextNode method was called.

To access bodyElement, You call the getChildElements method on soapBody. Passing
bodyName tO getChildElements refurns a java.util.lterator object that contains all the
child elements identified by the Name object bodyName. You already know that
thereisonly one, so calling the next method on it will return the SOAPBodyElement
you want. Note that the Iterator.next method returns a Java Object, SO you heed to
cast the Object it returns to a SOAPBodyElement object before assigning it to the
variable bodyElement.

SOAPBody soapBody = response.getSOA PBody();
javauutil.Iterator iterator =
soapBody.getChil dElements(bodyName);
SOAPBodyElement bodyElement =
(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getVal ue();
System.out.print("The last price for SUNW is");
System.out.printin(lastPrice);

ADDING CONTENT TO THE HEADER

If more than one element had the name bodyName, you would have to use a while
loop using the Iterator.hasNext method to make sure that you got all of them.

while (iterator.nasNext()) {
SOAPBodyElement bodyElement =
(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print(" The last price for SUNW is");
System.out.printin(lastPrice);
}

At this point, you have seen how to send a very basic request-response message
and get the content from the response. The next sections provide more detail on
adding content to messages.

Adding Content to the Header

To add content to the header, you create a SOAPHeaderElement object. As with all
new elements, it must have an associated Name object, which you can create
using the message's SOAPEnvelope Object or a SOAPFactory Object.

For example, suppose you want to add a conformance claim header to the mes-
sage to state that your message conforms to the WS-I Basic Profile. The follow-
ing code fragment retrieves the SOAPHeader object from message and adds a new
SOAPHeaderElement Object to it. This SOAPHeaderElement object contains the correct
qualified name and attribute for aWS-I conformance claim header.

SOAPHeader header = message.getSOAPHeader();
Name headerName = soapFactory.createName("Claim”,
"wsi", "http://ws-i.org/schemas/conformanceClaim/");
SOA PHeaderElement headerElement =
header.addHeaderElement(headerName);
headerElement.addA ttribute(soapFactory.createName(
"conformsTo"), "http://ws-i.org/profiles/basic1.0/");

At this point, header contains the SOAPHeaderElement 0bject headerElement identified
by the Name object headerName. Note that the addHeaderElement method both creates
headerElement and adds it to header.

69

70

SOAP WITH ATTACHMENTS APl FOR JAVA

A conformance claim header has no content. This code produces the following
XML header:

<SOAP-ENV:Header>
<wsi:Claim conformsTo="http://ws-i.org/profiles/basic1.0/"
xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"/>
</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-, see
the Messaging section of the WS-1 Basic Profile.

For a different kind of header, you might want to add content to headerElement.
Thefollowing line of code uses the method addTextNode to do this.

headerElement.addTextNode("order");

Now you have the SOAPHeader Object header that contains a SOAPHeaderElement
object whose content is “order".

Adding Content to the SOAPPart Object

If the content you want to send isin afile, SAAJ provides an easy way to add it
directly to the soAPPart abject. This means that you do not access the SOAPBody
object and build the XML content yourself, as you did in the preceding section.

To add a file directly to the SOAPPart object, you use a javax.xml.transform.Source
object from JAXP (the Java API for XML Processing). There are three types of
Source Objects: SAX Source, DOMSource, and StreamSource. A StreamSource object holds
an XML document in text form. SaXSource and DOM Source objects hold content
along with the instructions for transforming the content into an XML document.

Thefollowing code fragment uses the JAXP API to build a DOM Source object that
is passed to the SOAPPart.setContent method. The first three lines of code get a Doc-
umentBuilderFactory object and use it to create the DocumentBuilder object builder.
Because SOAP messages use namespaces, you should set the NamespaceAware

http://www.ws-i.org/Profiles/Basic/2003-01/BasicProfile-1.0-WGAD.html#messaging

ADDING A DOCUMENT TO THE SOAP BobDy

property for the factory to true. Then builder parses the content file to produce a
Document object.

DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newlnstance();

dbFactory.setNamespaceAware(true);

DocumentBuilder builder = dbFactory.newDocumentBuilder();

Document document =
builder.parse("file:///music/order/soap.xml™);

DOM Source domSource = nhew DOM Source(document);

The following two lines of code access the SOAPPart abject (using the SOAPMes-
sage object message) and set the new Document object as its content. The SOAP-
Part.setContent method not only sets content for the SOAPBody object but also sets
the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOA PPart();
soapPart.setContent(domSource);

The XML file you use to set the content of the SOAPPart object must include Enve-
lope and Body €l ements:

<SOAP-ENV:Envelope
xmlns="http://schemas.xml soap.org/soap/envel ope/" >
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections Adding a
Document to the SOAP Body (page 71) and Adding Attachments (page 72).

Adding a Document to the SOAP Body

In addition to setting the content of the entire SOAP message to that of a DOM-
Source object, you can add a DOM document directly to the body of the message.
This capability means that you do not have to create a javax.xml.transform.Source
object. After you parse the document, you can add it directly to the message

body:

SOAPBody body = message.getSOA PBody();
SOAPBodyElement docElement = body.addDocument(document);

71

72

SOAP WITH ATTACHMENTS APl FOR JAVA

Manipulating M essage Content Using SAAJ
or DOM APIs

Because SAAJ nodes and elements implement the DOM Node and Element inter-
faces, you have many options for adding or changing message content:

* Useonly DOM APIs.
* Useonly SAAJAPIs.
» Use SAAJAPIs and then switch to using DOM APIs.
* Use DOM APIsand then switch to using SAAJAPIs.

The first three of these cause no problems. After you have created a message,
whether or not you have imported its content from another document, you can
start adding or changing nodes using either SAAJor DOM APIs.

But if you use DOM APIsand then switch to using SAAJ APIsto manipulate the
document, any references to objects within the tree that were obtained using
DOM APIs are no longer valid. If you must use SAAJ APIs after using DOM
APIs, you should set al your DOM typed references to null, because they can
become invalid. For more information about the exact cases in which references
becomeinvalid, see the SAAJ APl documentation.

The basic rule is that you can continue manipulating the message content using
SAAJ APIs as long as you want to, but after you start manipulating it using
DOM, you should no longer use SAAJAPIs.

Adding Attachments

An AttachmentPart object can contain any type of content, including XML. And
because the SOAP part can contain only XML content, you must use an Attach-
mentPart Object for any content that is not in XML format.

Creating an AttachmentPart Object and Adding
Content
The soAPMessage object creates an AttachmentPart object, and the message also

must add the attachment to itself after content has been added. The SOAPMessage
class has three methods for creating an AttachmentPart object.

ADDING ATTACHMENTS

The first method creates an attachment with no content. In this case, an Attach-
mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to atachment by using the AttachmentPart method setContent. This
method takes two parameters: a Java Object for the content, and a String object for
the MIME content type that is used to encode the object. Content in the SOAP-
Body part of a message automatically has a Content-Type header with the value
"text/xml" because the content must be in XML. In contrast, the type of content in
an AttachmentPart object must be specified because it can be any type.

Each AttachmentPart object has one or more MIME headers associated with it.
When you specify atype to the setContent method, that type is used for the header
Content-Type. Note that Content-Type is the only header that is required. You may set
other optional headers, such as Content-ld and Content-Location. FOr convenience,
SAAJ provides get and set methods for the headers Content-Type, Content-1d, and
Content-Location. These headers can be helpful in accessing a particular attachment
when a message has multiple attachments. For example, to access the attach-
ments that have particular headers, you can call the SOAPMessage method getAt-
tachments and pass it a MIMEHeaders object containing the MIME headers you are
interested in.

The following code fragment shows one of the ways to use the method setContent.
The Java Object in the first parameter can be a String, a stream, a javax.xml.trans-
form.Source Object, or a javax.activation.DataHandler object. The Java Object being
added in the following code fragment is a String, which is plain text, so the sec-
ond argument must be "text/plain". The code also sets a content identifier, which
can be used to identify this AttachmentPart object. After you have added content to
attachment, you must add it to the SOAPMessage object, something that is done in
the last line.

String stringContent = "Update address for Sunny Skies™ +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain™);
attachment.setContentld("update_address");

message.addA ttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that contains the
string stringContent and has a header that contains the string “text/plain”. It also has a

73

74

SOAP WITH ATTACHMENTS APl FOR JAVA

Content-ld header with "update_address' as its value. And attachment is now part of
message.

The other two SOAPMessage. createAttachment methods create an AttachmentPart object
complete with content. One is very similar to the AttachmentPart.setContent method
in that it takes the same parameters and does essentially the same thing. It takesa
Java Object containing the content and a String giving the content type. As with
AttachmentPart.setContent, the Object can be a String, a stream, a javax.xml.trans-
form.Source Object, or ajavax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a DataH-
andler object, which is part of the JavaBeans Activation Framework (JAF). Using
aDataHandler object isfairly straightforward. First, you create ajava.net. URL object
for the file you want to add as content. Then you create a DataHandler object ini-
tialized with the URL object:

URL url = new URL ("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment =
message.createAttachmentPart(dataHandler);
attachment.setContentl d(" attached_image");

message.addA ttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for
Content-ID using the method setContentld. This method takes a String that can be
whatever you like to identify the attachment. Second, unlike the other methods
for setting content, this one does not take a String for Content-Type. This method
takes care of setting the Content-Type header for you, something that is possible
because one of the things a DataHandler object does is to determine the data type
of thefileit contains.

Accessing an AttachmentPart Object

If you receive a message with attachments or want to change an attachment to a
message you are building, you need to access the attachment. The SOAPMessage
class provides two versions of the getAttachments method for retrieving its Attach-
mentPart Objects. When it is given no argument, the method SOAPMessage.getAttach-
ments returns a javadtil.lterator object over all the AttachmentPart objects in a
message. When getAttachments iS given a MimeHeaders object, which is a list of
MIME headers, getAttachments returns an iterator over the AttachmentPart objects
that have a header that matches one of the headersin the list. The following code
uses the getAttachments method that takes no arguments and thus retrieves all the

ADDING ATTRIBUTES

AttachmentPart objects in the SOAPMessage object message. Then it prints the content
ID, the content type, and the content of each AttachmentPart object.

javauutil.Iterator iterator = message.getAttachments();
while (iterator.nasNext()) {
AttachmentPart attachment =
(AttachmentPart)iterator.next();
String id = attachment.getContentl d();
String type = attachment.getContent Type();
System.out.print("Attachment " +id +
" has content type " + type);
if (type=="text/plain") {
Object content = attachment.getContent();
System.out.printin(" Attachment " +
"contains:\n" + content);

Adding Attributes

An XML element can have one or more attributes that give information about
that element. An attribute consists of a name for the attribute followed immedi-
ately by an equal sign (=) and its value.

The soaAPElement interface provides methods for adding an attribute, for getting
the value of an attribute, and for removing an attribute. For example, in the fol-
lowing code fragment, the attribute named id is added to the SOAPElement object
person. Because person iS a SOAPElement object rather than a SOAPBodyElement
object or SOAPHeaderElement object, it islegal for its Name object to contain only a
local name.

Name attributeName = envelope.createName("id");
person.addAttribute(attributeName, " Person7");

These lines of code will generate the first line in the following XML fragment.
<person id="Person7">
<./.p.)erson>

The following line of code retrieves the value of the attribute whose nameisid.

String attributeValue =
person.getAttributeVal ue(attributeName);

75

76

SOAP WITH ATTACHMENTS APl FOR JAVA

If you had added two or more attributes to person, the preceding line of code
would have returned only the value for the attribute named id. If you wanted to
retrieve the values for all the attributes for person, you would use the method
getAllAttributes, which returns an iterator over all the values. The following lines
of code retrieve and print each value on a separate line until there are no more
attribute values. Note that the Iterator.next method returns a Java Object, which is
cast to a Name object so that it can be assigned to the Name object attributeName.
(The examples in DOM Example.java and DOM SrcExample.java (page 95) use
code similar to this.)

Iterator iterator = person.getAllAttributes();
while (iterator.hasNext()){
Name attributeName = (Name) iterator.next();
System.out.printin("Attribute nameis" +
attributeName.getQualifiedName());
System.out.printin("Attribute valueis" +
element.getAttributeVal ue(attributeName));

}

The following line of code removes the attribute named id from person. The vari-
able successtul will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This
information is general in that it applies to any element. The next section dis-
cusses attributes that can be added only to header elements.

Header Attributes

Attributes that appear in a SOAPHeaderElement object determine how a recipient
processes a message. You can think of header attributes as offering a way to
extend a message, giving information about such things as authentication, trans-
action management, payment, and so on. A header attribute refines the meaning
of the header, whereas the header refines the meaning of the message contained
in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAP-
HeaderElement Objects: actor and mustUnderstand. The next two sections discuss these
attributes.

See HeaderExample.java (page 93) for an example that uses the code shown in
this section.

ADDING ATTRIBUTES

The Actor Attribute

The actor attribute is optional, but if it is used, it must appear in a SOAPHeaderEle-
ment object. Its purpose is to indicate the recipient of a header element. The
default actor is the message's ultimate recipient; that is, if no actor attribute is
supplied, the message goes directly to the ultimate recipient.

An actor is an application that can both receive SOAP messages and forward
them to the next actor. The ability to specify one or more actors as intermediate
recipients makes it possible to route a message to multiple recipients and to sup-
ply header information that applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. Its SOAP-
Header Object might have SOAPHeaderElement objects with actor attributes that
route the message to applications that function as the order desk, the shipping
desk, the confirmation desk, and the billing department. Each of these applica-
tions will take the appropriate action, remove the SOAPHeaderElement objects rele-
vant to it, and send the message on to the next actor.

Note: Although the SAAJAPI providesthe API for adding these attributes, it does
not supply the API for processing them. For example, the actor attribute requires
that there be an implementation such as a messaging provider service to route the
message from one actor to the next.

An actor is identified by its URI. For example, the following line of code, in
which orderHeader iS a SOAPHeaderElement Object, sets the actor to the given URI.

orderHeader.setActor (" http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The follow-
ing code fragment first uses the SOAPMessage Object message to get itS SOAPHeader
object header. Then header creates four SOAPHeaderElement objects, each of which
Ssets its actor attribute.

SOAPHeader header = message.getSOAPHeader();
SOAPFactory soapFactory = SOAPFactory.newlnstance();

String nameSpace = "ns’;
String nameSpaceURI = "http://gizmos.com/NSURI";

Name order = soapFactory.createName("orderDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement orderHeader =
header.addHeaderElement(order);

77

78

SOAP WITH ATTACHMENTS APl FOR JAVA

orderHeader.setActor("http://gizmos.com/orders");

Name shipping =
soapFactory.createName(" shippingDesk”,
nameSpace, nameSpaceURI);
SOA PHeaderElement shippingHeader =
header.addHeaderElement(shipping);
shippingHeader.setActor (" http://gizmos.com/shipping");

Name confirmation =
soapFactory.createName(" confirmationDesk",
nameSpace, nameSpaceURI);
SOAPHeaderElement confirmationHeader =
header.addHeaderElement(confirmation);
confirmationHeader.setActor(
"http://gizmos.com/confirmations’);

Name billing = soapFactory.createName("billingDesk",
nameSpace, nameSpaceURI);

SOA PHeaderElement billingHeader =
header.addHeaderElement(billing);

billingHeader.setActor("http://gizmos.com/billing");

The soAPHeader interface provides two methods that return ajava.util.lterator object
over al the SOAPHeaderElement objects that have an actor that matches the speci-
fied actor. The first method, examineHeaderElements, returns an iterator over all the
elements that have the specified actor.

javauutil.Iterator headerElements =
header.examineHeaderElements("http://gizmos.com/orders");

The second method, extractHeaderElements, not only returns an iterator over all the
SOAPHeaderElement objects that have the specified actor attribute but also detaches
them from the SOAPHeader object. So, for example, after the order desk applica-
tion did its work, it would call extractHeaderElements to remove all the SOAPHeader-
Element objects that applied to it.

javauutil.Iterator headerElements =
header.extractHeaderElements("http://gizmos.com/orders”™);

Each soAPHeaderElement object can have only one actor attribute, but the same
actor can be an attribute for multiple SOAPHeaderElement objects.

Two additional SOAPHeader methods—examineAllHeaderElements and extractAllHead-
erElements—allow you to examine or extract al the header elements, whether or

ADDING ATTRIBUTES

not they have an actor attribute. For example, you could use the following code
to display the values of all the header elements:

Iterator allHeaders =
header.examineAllHeaderElements();
while (allHeaders.hasNext()) {
SOA PHeaderElement headerElement =
(SOAPHeaderElement)alIHeaders.next();
Name headerName =
headerElement.getElementName();
System.out.printin(*\nHeader nameis" +
headerName.getQualifiedName());
System.out.printin("Actor is" +
headerElement.getActor());

The mustUnder stand Attribute

The other attribute that must be added only to a SOAPHeaderElement object is mus-
tUnderstand. This attribute says whether or not the recipient (indicated by the actor
attribute) is required to process a header entry. When the value of the mustUnder-
stand attribute is true, the actor must understand the semantics of the header entry
and must process it correctly to those semantics. If the value is false, processing
the header entry is optional. A SOAPHeaderElement object with no mustUnderstand
attribute is equivalent to one with a mustUnderstand attribute whose value is false.

The mustUnderstand attribute is used to call attention to the fact that the semantics
in an element are different from the semanticsin its parent or peer elements. This
alows for robust evolution, ensuring that a change in semantics will not be
silently ignored by those who may not fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot pro-
cess the header, it must send a SOAP fault back to the sender. (See Using SOAP
Faults, page 80.) The actor must not change state or cause any side effects, so
that, to an outside observer, it appears that the fault was sent before any header
processing was done.

The following code fragment creates a SOAPHeader object with a SOAPHeaderEle-
ment object that has a mustUnderstand attribute.

SOAPHeader header = message.getSOAPHeader();

Name name = soapFactory.createName(" Transaction”, "t",
"http://gizmos.com/orders");

79

80

SOAP WITH ATTACHMENTS APl FOR JAVA

SOA PHeaderElement transaction = header.addHeaderElement(name);
transaction.setMustUnderstand(true);
transaction.addTextNode("5");

This code produces the following XML:

<SOAP-ENV:Header>
<t:Transaction
xmins:t="http://gizmos.com/orders"
SOAP-ENV:mustUnderstand="1">
5
</t:Transaction>
</SOAP-ENV:Header>

You can use the getMustUnderstand method to retrieve the value of the mustUnder-
stand attribute. For example, you could add the following to the code fragment at
the end of the preceding section:

System.out.printin("mustUnderstand is" +
headerElement.getM ustUnderstand());

Using SOAP Faults

In this section, you will see how to use the API for creating and accessing a
SOAP fault element in an XML message.

Overview of SOAP Faults

If you send a message that was not successful for some reason, you may get back
aresponse containing a SOAP fault element, which givesyou status information,
error information, or both. There can be only one SOAP fault element in a mes-
sage, and it must be an entry in the SOAP body. Furthermore, if thereis a SOAP
fault element in the SOAP body, there can be no other elements in the SOAP
body. This means that when you add a SOAP fault element, you have effectively
completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJAPI,
is similar to an Exception object in that it conveys information about a problem.
However, a SOAPFault object is quite different in that it is an element in a mes-
sage's SOAPBody object rather than part of the try/catch mechanism used for Excep-
tion objects. Also, as part of the SOAPBody object, which provides a simple means

UsING SOAP FAULTS

for sending mandatory information intended for the ultimate recipient, a SOAP-
Fault object only reports status or error information. It does not halt the execution
of an application, as an Exception object can.

If you are aclient using the SAAJ API and are sending point-to-point messages,
the recipient of your message may add a SOAPFault object to the response to alert
you to a problem. For example, if you sent an order with an incomplete address
for where to send the order, the service receiving the order might put a SOAPFault
object in the return message telling you that part of the address was missing.

Another example of who might send a SOAP fault is an intermediate recipient,
or actor. As stated in the section Adding Attributes (page 75), an actor that can-
not process a header that has a mustUnderstand attribute with a value of true must
return a SOAP fault to the sender.

A SOAPFault object contains the following el ements:

« A fault code: Always required. The fault code must be a fully qualified
name: it must contain a prefix followed by alocal name. The SOAP 1.1
specification defines a set of fault code local name valuesin section 4.4.1,
which a developer can extend to cover other problems. The default fault
codelocal names defined in the specification relate to the SAAJAPI asfol-
lows:

* VersonMismatch: The namespace for a SOAPEnvelope object was invalid.

¢ MustUnderstand: An immediate child element of a SOAPHeader object had
its mustUnderstand attribute set to true, and the processing party did not
understand the element or did not obey it.

 Client: The SOAPMessage object was not formed correctly or did not con-
tain the information needed to succeed.

* Server: The SOAPMessage object could not be processed because of apro-
cessing error, not because of a problem with the message itself.

« A fault string: Always required. A human-readable explanation of the
fault.

» A fault actor: Required if the SOAPHeader Object contains one or more actor
attributes; optional if no actors are specified, meaning that the only actor
is the ultimate destination. The fault actor, which is specified as a URI,
identifies who caused the fault. For an explanation of what an actor is, see
The Actor Attribute, page 77.

» A Detail object: Required if the fault is an error related to the SOAPBody
object. If, for example, the fault code is Client, indicating that the message
could not be processed because of a problem in the SOAPBody object, the

81

82

SOAP WITH ATTACHMENTS APl FOR JAVA

SOAPFault object must contain a Detail object that gives details about the
problem. If a SOAPFault object does not contain a Detail object, it can be
assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object

You have seen how to add content to a SOAPBody object; this section walks you
through adding a SOAPFault object to a SOAPBody object and then adding its con-
stituent parts.

Aswith adding content, the first step isto access the SOAPBody object.
SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault
object. The following line of code creates a SOAPFault object and adds it to body.

SOA PFault fault = body.addFault();

The sOAPFault interface provides convenience methods that create an element,
add the new element to the SOAPFault object, and add atext node, al in one oper-
ation. For example, in the following lines of code, the method setFaultCode creates
a faultcode element, adds it to fault, and adds a Text node with the value "SOAP-
ENV:Server" by specifying a default prefix and the namespace URI for a SOAP
envelope.

Name faultName =
soapFactory.createName(" Server”,

", SOAPConstants.URI_NS SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultActor("http://gizmos.com/orders’);
fault.setFaultString(" Server not responding™);

The sOAPFault object fault, created in the preceding lines of code, indicates that
the cause of the problem is an unavailable server and that the actor at http:/
gizmos.com/orders is having the problem. If the message were being routed only to
its ultimate destination, there would have been no need to set a fault actor. Also
note that fault does not have a Detail object because it does not relate to the SOAP-
Body Object.

The following code fragment creates a SOAPFault object that includes a Detail
object. Note that a SOAPFault object can have only one Detail object, which issim-
ply a container for DetailEntry Objects, but the Detail object can have multiple

UsING SOAP FAULTS

DetailEntry Objects. The Detail object in the following lines of code has two
Detail Entry objects added to it.

SOAPFault fault = body.addFault();

Name faultName = soapFactory.createName(" Client",

", SOAPConstants.URI_NS_SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultString("' M essage does not have necessary info");

Detail detail = fault.addDetail();

Name entryName = soapFactory.createName(" order",

"PO", "http://gizmos.com/orders/");
Detail Entry entry = detail.addDetail Entry(entryName);
entry.addTextNode(" Quantity element does not have avalue");

Name entryName2 = soapFactory.createName(" confirmation",
"PO", "http://gizmos.com/confirm");

Detail Entry entry2 = detail .addDetail Entry(entryName2);

entry2.addTextNode(" Incomplete address: no zip code'");

See SOAPFaultTest.java (page 101) for an example that uses code like that
shown in this section.

Retrieving Fault Information

Just as the soAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.
The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newMessage is the
SOAPMessage Object that has been sent to you. Because a SOAPFault object must be
part of the SOAPBody object, the first step is to access the SOAPBody object. Then
the code tests to see whether the SOAPBody object contains a SOAPFault object. If
it does, the code retrieves the SOAPFault object and usesit to retrieve its contents.
The convenience methods getFaultCode, getFaultString, and getFaultActor make
retrieving the values very easy.

SOAPBody body = newMessage.getSOAPBody();
if (body.hasFault()) {
SOAPFault newFault = body.getFault();
Name code = newFault.getFaultCodeAsName();
String string = newFault.getFaultString();
String actor = newFault.getFaultActor();

83

SOAP WITH ATTACHMENTS APl FOR JAVA

Next the code prints the values it has just retrieved. Not all messages are
required to have a fault actor, so the code tests to see whether there is one. Test-
ing whether the variable actor is null works because the method getFaultActor
returns null if afault actor has not been set.

System.out.printin(" SOAP fault contains: ");

System.out.printin(* Fault code=" +
code.getQualifiedName());

System.out.printin(* Fault string =" + string);

if (actor !=null) {
System.out.printin("* Fault actor =" + actor);

}

The final task is to retrieve the Detail object and get its DetailEntry objects. The
code uses the SOAPFault Object newFault to retrieve the Detail object newDetail, and
then it uses newDetail to call the method getDetailEntries. This method returns the
java.util.Iterator object entries, which contains all the DetailEntry objects in newDetail.
Not all soAPFault objects are required to have a Detail object, so the code tests to
see whether newDetail isnull. If it isnot, the code prints the values of the DetailEntry
objects as long as there are any.

Detail newDetail = newFault.getDetail();
if (newDetail !'=null) {
Iterator entries = newDetail.getDetail Entries();
while (entries.hasNext()) {
Detail Entry newEntry =
(Detail Entry)entries.next();
String value = newEntry.getVal ue();
System.out.printin(* Detail entry =" + value);

}
}

In summary, you have seen how to add a SOAPFault Object and its contents to a
message as well as how to retrieve the contents. A SOAPFault object, which is
optional, is added to the SOAPBody object to convey status or error information. It
must always have a fault code and a String explanation of the fault. A SOAPFault
object must indicate the actor that is the source of the fault only when there are
multiple actors; otherwise, it is optional. Similarly, the SOAPFault object must
contain a Detail object with one or more Detail Entry 0bjects only when the contents
of the SOAPBody object could not be processed successfully.

See SOAPFaultTest.java (page 101) for an example that uses code like that
shown in this section.

CODE EXAMPLES

Code Examples

The first part of thistutorial uses code fragments to walk you through the funda-
mentals of using the SAAJ API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Requestjava.
Then you will see how to run the programs MyUddiPing.java, HeaderExample,java,
DOMExample.java, DOM SrcExamplejava, Attachments,java, and SOAPFaultTest.java.

To run these examples, you will deploy them to the Sun Java System Application
Server Platform 8.1 from the IDE.

Request.java

The class Requestjava puts together the code fragments used in the section
Tutorial (page 59) and adds what is needed to make it a complete example of a
client sending a request-response message. In addition to putting al the code
together, it adds import statements, a main method, and a try/catch block with
exception handling.

import javax.xml.soap.*;
import java.util.*;
import java.net.URL ;

public class Request {
public static void main(String[] args){
try {

SOA PConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newlInstance();

SOAPConnection connection =
soapConnectionFactory.createConnection();

SOA PFactory soapFactory =
SOA PFactory.new! nstance();

M essageFactory factory =
M essageFactory.newlnstance();
SOA PM essage message = factory.createM essage();

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOA PBody();
header.detachNode();

Name bodyName = soapFactory.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

85

86

SOAP WITH ATTACHMENTS APl FOR JAVA

SOAPBodyElement bodyElement =
body.addBodyElement(bodyName);

Name name = soapFactory.createName("'symbol");

SOAPElement symbol =
bodyElement.addChildElement(name);

symbol.addTextNode(" SUNW");

URL endpoint = new URL
("http://wombat.ztrade.com/quotes");

SOAPM essage response =
connection.call(message, endpoint);

connection.close();
SOAPBody soapBody = response.getSOA PBody();

Iterator iterator =

soapBody.getChildElements(bodyName);
bodyElement = (SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is™);
System.out.printin(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();
}
}
}

For Requestjava to be runnable, the second argument supplied to the call method
would have to be avalid existing URI, and thisis not true in this case. However,
the application in the next section is one that you can run.

MyUddiPing.java

The program MyUddiPing.java is another example of a SAAJ client application. It
sends a request to a Universal Description, Discovery and Integration (UDDI)
service and gets back the response. A UDDI service is a business registry and
repository from which you can get information about businesses that have regis-
tered themselves with the registry service. For this example, the MyUddiPing
application is not actually accessing a UDDI service registry but rather a test
(demo) version. Because of this, the number of businesses you can get informa-

MYUDDIPING.JAVA

tion about is limited. Nevertheless, MyUddiPing demonstrates a request being
sent and a response being received.

Setting Up
The MyUddiPing example isin the following directory:

<INSTALL>/j 2eetutorial 14/exampl es/sagj/myuddi ping/

Note: <INSTALL> isthe directory where you installed the tutorial bundle.

In the myuddiping directory, you will find an IDE project called MyUddiPing. Its
src directory contains one source file, MyUddiPing.java.

The file uddi.properties contains the URL of the destination (a UDDI test registry)
and the proxy host and proxy port of the sender. By default, the destination is the
IBM test registry; the Microsoft test registry is commented out.

If you access the Internet from behind afirewall, edit the uddi.properties file to sup-
ply the correct proxy host and proxy port. If you are not sure what the values for
these are, consult your system administrator or another person with that informa-
tion. The typical value of the proxy port is 8080. You can also edit the file to
specify another registry.

The file build.xml isthe IDE’s build file for this example. The Build Project com-
mand is hooked up to atarget in the buildxml file that compiles the source file
MyUddiPing.java and puts the resulting .class file in the build directory. So to do
these tasks, you take the same steps as above and right-click the project, after
which you choose Build Project.

Examining MyUddiPing

We will go through the file MyuUddiPing.java a few lines at atime, concentrating on
the last section. Thisis the part of the application that accesses only the content
you want from the XML message returned by the UDDI registry.

Thefirst few lines of code import the packages used in the application.

import javax.xml.soap.*;
import java.net.*;

import java.util.*;
import java.io.*;

../examples/saaj/myuddiping/src/MyUddiPing.java
../examples/saaj/myuddiping/src/MyUddiPing.java

88

SOAP WITH ATTACHMENTS APl FOR JAVA

The next few lines begin the definition of the class MyUddiPing, which starts with
the definition of its main method. The first thing it doesisto check to see whether
two arguments were supplied. If they were nat, it prints a usage message and
exits. The usage message mentions only one argument; the other is supplied by
the build.xml target.

public class MyUddiPing {
public static void main(String[] args) {
try {

if (args.length !=2) {

System.err.printin("Usage: asant run " +
"-Dbusiness-name=<name>");

System.exit(1);

}

The following lines create a java.util.Properties object that contains the system
properties and the properties from the fil e uddi.properties, which isin the myuddiping
directory.

Properties myprops = new Properties();
myprops.load(new FilelnputStream(args[Q]));

Properties props = System.getProperties();

Enumeration propNames = myprops.propertyNames();
while (propNames.hasM oreElements()) {
String s = (String)propNames.nextElement();
props.setProperty(s, myprops.getProperty(s));
}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of MessageFactory and an instance of SOAPFactory, using the MessageFactory
instance to create a message.

SOA PConnectionFactory soapConnectionFactory =
SOA PConnectionFactory.newl nstance();
SOAPConnection connection =
soapConnectionFactory.createConnection();
M essageFactory messageFactory =
M essageFactory.newlInstance();
SOA PFactory soapFactory = SOAPFactory.newlnstance();

SOAPM essage message =
messageFactory.createM essage();

MYUDDIPING.JAVA

The next lines of code retrieve the SOAPHeader and SOAPBody objects from the
message and remove the header.

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOA PBody();
header.detachNode();

The following lines of code create the UDDI find_business message. Thefirst line
creates a SOAPBodyElement with a fully qualified name, including the required
namespace for a UDDI version 2 message. The next lines add two attributes to
the new element: the required attribute generic, with the UDDI version number
2.0, and the optional attribute maxRows, with the value 100. Then the code adds a
child element that has the Name object name and adds text to the element by using
the method addTextNode. The added text is the business name you will supply at
the command line when you run the application.

SOAPBodyElement findBusiness =
body.addBodyElement(soapFactory.createName(
"find_business', "",
"urn:uddi-org:api_v2"));
findBusiness.addAttribute(soapFactory.createName(
"generic"), "2.0");
findBusiness.addA ttribute(soapFactory.createName(
"maxRows"), "100");

SOAPElement businessName =
findBusiness.addChildElement(
soapFactory.createName("name"));
businessName.addTextNode(args[1]);

The next line of code saves the changes that have been made to the message.
This method will be called automatically when the message is sent, but it does
not hurt to call it explicitly.

message.saveChanges();
The following lines display the message that will be sent:

System.out.printin("\n--- Request Message ---\n");
message.writeTo(System.out);

89

90

SOAP WITH ATTACHMENTS APl FOR JAVA

The next line of code creates the java.net. URL object that represents the destination
for this message. It gets the value of the property named URL from the system
property file.

URL endpoint = new URL(
System.getProperties().getProperty("URL"));

Next, the message message i S sent to the destination that endpoint represents, which
is the UDDI test registry. The call method will block until it gets a SOAPMessage
object back, at which point it returns the reply.

SOAPMessage reply =
connection.call(message, endpoint);

In the next lines of code, the first line prints aline giving the URL of the sender
(the test registry), and the others display the returned message.

System.out.printIn("\n\nReceived reply from: " +
endpoint);

System.out.printin(*\n---- Reply Message ----\n");

reply.writeTo(System.out);

The returned message is the complete SOAP message, an XML document, as it
lookswhen it comes over thewire. It isabusinessList that follows the format spec-
ified in http://uddi.org/pubs/DataStructure-V 2.03-Published-20020719.htm# Toc25130802.

Asinteresting asit isto seethe XML that is actually transmitted, the XML docu-
ment format does not make it easy to see the text that is the message’'s content.
To remedy this, the last part of MyUddiPing.java contains code that prints only the
text content of the response, making it much easier to see the information you
want.

Because the content is in the SOAPBody object, the first step is to access it, as
shown in the following line of code.

SOAPBody replyBody = reply.getSOAPBody();
Next, the code displays a message describing the content:

System.out.printIn("\n\nContent extracted from " +
"the reply message:\n");

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802

MYUDDIPING.JAVA

To display the content of the message, the code uses the known format of the
reply message. First, it gets all the reply body’s child elements named businessList:

Iterator businessListlterator =
replyBody.getChil dElements(
soapFactory.createName("businessList",
", "urn:uddi-org:api_v2"));

The method getChildElements returns the elements in the form of a java.til.lterator
object. You access the child elements by calling the method next on the Iterator
object. An immediate child of a SOAPBody object is a SOAPBodyElement object.

We know that the reply can contain only one businessList €l ement, so the code then
retrieves this one element by calling the iterator’s next method. Note that the
method Iterator.next returns an Object, which must be cast to the specific kind of
object you are retrieving. Thus, the result of calling businessListlterator.next iS cast
t0 a SOAPBodyElement Object:

SOAPBodyElement businessList =
(SOAPBodyElement)businessListlterator.next();

The next element in the hierarchy is a single businessinfos element, so the code
retrieves this element in the same way it retrieved the businessList. Children of
SOAPBodyElement objects and al child elements from this point forward are
SOA PElement objects.

Iterator businessinfoslterator =
businessList.getChildElements(
soapFactory.createName("businessinfos”,
" "urn:uddi-org:api_v2"));

SOAPElement businessinfos =
(SOAPElement)busi nessl nfoslterator.next();

The businessinfos element contains zero or more businessinfo elements. If the query
returned no businesses, the code prints a message saying that none were found. If
the query returned businesses, however, the code extracts the name and optional
description by retrieving the child elements that have those names. The method
Iterator.hasNext can be used in awhile loop because it returns true as long as the next

91

92 SOAP WITH ATTACHMENTS APl FOR JAVA

call to the method next will return a child element. Accordingly, the loop ends
when there are no more child elementsto retrieve.

Iterator businessinfolterator =
businessl nfos.getChil dElements(
soapFactory.createName("businessinfo",

, "urn:uddi-org:api_v2"));

if (! businessinfolterator.nasNext()) {
System.out.printin(*No businesses found " +
"matching the name\"" + argg 1] + "\".");
}else{
while (businessinfolterator.hasNext()) {
SOA PElement businessinfo = (SOA PElement)
businessInfol terator.next();

Iterator namelterator =
businessl nfo.getChildElements(
soapFactory.createName("name”,
", "urn:uddi-org:api_v2"));
while (namelterator.hasNext()) {
businessName =
(SOAPElement)namel terator.next();
System.out.printin("Company name: " +
businessName.getVa ue());
}
Iterator descriptionlterator =
businessl nfo.getChil dElements(
soapFactory.createName(
"description”, "",
"urn:uddi-org:api_v2"));
while (descriptionlterator.hasNext()) {
SOAPElement businessDescription =
(SOAPElement) descriptionlterator.next();
System.out.printin("Description: " +
businessDescription.getValue());

}
System.out.printin("");

Running MyUddiPing

Make sure you have edited the uddi.properties file and compiled MyUddiPing.java as
described in Setting Up (page 87).

HEADEREXAMPLE.JAVA

To run the application, follow these steps:

1

4,
5.

If you have not already opened the MyUddiPing project, choose
File—>Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial 14/examples/sagj/, select the myuddiping project, and choose Open
Project Folder.

. The project needs to know the location of some JAR files onits classpath.

Right-click the project and choose Resolve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In thefile
chooser, select navigate to the lib directory in your application server
installation, select activationjar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

. Right-click the project in the Projects window, choose Properties, click

Run, and type uddi.properties food in the Arguments field. The first argument
isthe file uddi.properties. The other argument is the name of the business for
which you want to get a description. Click OK.

In the Projects window, right-click the project and choose Run Project.
In the Output window, the application displays the following output:

Content extracted from the reply message:

Company name: Food
Description: Test Food

Company name: Food Manufacturing

Company name: foodCompanyA
Description: It isafood company sells biscuit

If you want to run MyUddiPing again, you may want to start over by deleting the
build directory and the .dassfile it contains. You can do this by right-clicking the
project node in the Projects window and choosing Clean Project.

Header Examplejava

The example HeaderExample.java, based on the code fragments in the section Add-
ing Attributes (page 75), creates a message that has several headers. It then
retrieves the contents of the headers and prints them. You will find the code for
HeaderExample in the following directory:

<INSTALL>/j2eetutorial 14/exampl es/sagj/headerexample

93

../examples/saaj/headers/src/HeaderExample.java

SOAP WITH ATTACHMENTS APl FOR JAVA

Running Header Example

To run the application, follow these steps:

1. If you have not aready opened the HeaderExample project, choose
File—>Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial 14/examples/sagj/, Select the headerexample project, and choose Open
Project Folder.

2. The project needsto know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In thefile
chooser, select navigate to the lib directory in your application server
installation, select activationjar, and click OK. The IDE automatically
resolves the location of the other missing JAR files. Click Close.

3. In the Projects window, right-click the project and choose Run Project.
4. In the Output window, the application displays the following output:

----- Request Message ----

<SOAP-ENV:Envelope

xmlns:SOAP-ENV ="http://schemas.xml soap.org/soap/envel ope/" >
<SOAP-ENV:Header>

<ns.orderDesk SOAP-ENV:actor="http://gizmos.com/orders’ xmins:ns="http://gizmos.com/
NSURI"/>

<ns:shippingDesk SOAP-ENV:actor="http://gizmos.com/shipping" xmins:ns="http://
gizmos.com/NSURI"/>

<ns:confirmationDesk

SOAP-ENV:actor="http://gizmos.com/confirmations’ xmlns:ns="http://gizmos.com/
NSURI"/>

<ns:hillingDesk SOAP-ENV:actor="http://gizmos.com/billing" xmIns:ns="http://
gizmos.com/NSURI"/>

<t:Transaction SOAP-ENV:mustUnderstand="1" xmins:t="http://gizmos.com/orders'>5</
t:Transaction>

</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envel ope>

Header name is ns.orderDesk

Actor is http://gizmos.com/orders

mustUnderstand is false

Header name is ns:shippingDesk
Actor is http://gizmos.com/shipping
mustUnderstand is false

Header name is ns.confirmationDesk
Actor is http://gizmos.com/confirmations
mustUnderstand is false

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

Header nameis ns:billingDesk
Actor is http://gizmos.com/billing
mustUnderstand is false

Header nameist: Transaction
Actor isnull
mustUnderstand is true

DOM Example.java and
DOM SrcExamplejava

The examples DOMExample.java and DOM SrcExample.java show how to add a DOM
document to a message and then traverse its contents. They show two waysto do
this:

* DOMExamplejavacreatesaDOM document and addsit to the body of ames-
sage.

* DOMSrcExamplejava creates the document, uses it to create a DOM Source
object, and then sets the DOM Source object as the content of the message’s
SOAP part.

You will find the code for DOM Example and DOM SrcExample in the following
directory:

<INSTALL>/j2eetutorial 14/exampl es/saaj/dom

Examining DOM Example

DOMExample first creates a DOM document by parsing an XML document.
Thefileit parsesis one that you specify on the command line.

static Document document;

DocumentBuilderFactory factory =
DocumentBuilderFactory.newlnstance();

factory.setNamespaceAware(true);

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argq0]));

95

../examples/saaj/dom/src/DOMExample.java
../examples/saaj/dom/src/DOMSrcExample.java

96 SOAP WITH ATTACHMENTS APl FOR JAVA

Next, the example creates a SOAP message in the usual way. Then it adds the
document to the message body:

SOAPBodyElement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displaysthe
message content and then uses a recursive method, getContents, to traverse the ele-
ment tree using SAAJ APIs and display the message contents in a readable form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {
Node node = (Node) iterator.next();
SOAPElement element = null;
Text text = null;
if (node instanceof SOAPElement) {
element = (SOAPElement)node;
Name name = element.getElementName();
System.out.printin(indent + "Nameis™" +
name.getQualifiedName());
Iterator attrs = element.getAllAttributes();
while (attrs.hasNext()){
Name attrName = (Name)attrs.next();
System.out.printin(indent +
" Attribute nameis" +
attrName.getQualifiedName());
System.out.printin(indent +
" Attribute valueis" +
element.getAttributeVal ue(attrName));
}
Iterator iter2 = element.getChildElements();
getContents(iter2, indent +");
} else{
text = (Text) node;
String content = text.getValue();
System.out.printin(indent +
"Content is; " + content);
}
}
}

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

Examining DOM SrcExample

DOM SrcExample differs from DOMExample in only a few ways. First, after it
parses the document, DOM SrcExampl e uses the document to create a DOM Source
object. This code is the same as that of DOM Example except for the last line:

static DOM Source domSource;

try {
DocumentBuilder builder =
factory.newDocumentBuilder();
document = builder.parse(new File(argg[0]));
domSource = new DOM Source(document);

Then, after DOM SrcExampl e creates the message, it does not get the header and
body and add the document to the body, as DOM Example does. Instead, DOM-
SrcExample gets the SOAP part and sets the DOMSource object as its content:

I/ Create amessage
SOAPM essage message = messageFactory.createM essage();

I/ Get the SOAP part and set its content to domSource
SOAPPart soapPart = message.getSOA PPart();
soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both the
header (if it exists) and the body of the message.

The most important difference between these two examplesis the kind of docu-
ment you can use to create the message. Because DOM Example adds the docu-
ment to the body of the SOAP message, you can use any valid XML file to
create the document. But because DOM SrcExample makes the document the
entire content of the message, the document must aready be in the form of a
valid SOAP message, and not just any XML document.

97

98

SOAP WITH ATTACHMENTS APl FOR JAVA

Running DOM Example and DOM SrcExample

To run DOMExample and DOM SrcExample, you use the IDE project that isin
the directory <INSTALL>/j2estutorial 14/examples/sagj. This directory also contains sev-
eral sample XML filesyou can use:

domsrcl.xml, an example that has a SOAP header (the contents of the Head-
erExample output) and the body of a UDDI query

domsre2.xml, an example of a reply to a UDDI query (specifically, some
sample output from the MyUddiPing example), but with spaces added for
readability

uddimsg.xml, similar to domsrc2.xml except that it is only the body of the mes-
sage and contains no spaces

dide.xml

To run the application, follow these steps:

1

4.
5.

If you have not aready opened the DomExample project, choose
File—Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial 14/examples/sagj/, Select the DomExample project, and choose Open
Project Folder.

. The project needs to know the location of some JAR files on its classpath.

Right-click the project and choose Resolve Reference Problems. Select the
“sagj-api.jar” file/folder could not be found message and click Resolve. In the file
chooser, select navigate to the lib directory in your application server
installation, select sagj-apijar, and click OK. The IDE automaticaly
resolves the location of the other missing JAR files. Click Close.

. Right-click the project in the Projects window, choose Properties, click

Run, and type domsrc1.xml (or any of the other arguments above). Click OK.
In the Projects window, right-click the project and choose Run Project.
In the Output window, the application displays the following output:

Running DOMExample.

Nameis businessList

Attribute name is generic

Attribute valueis 2.0

Attribute name is operator

Attribute value is www.ibm.com/services/uddi
Attribute nameistruncated

ATTACHMENTS.JAVA

Attribute value isfalse
Attribute nameis xmins
Attribute value is urn:uddi-org:api_v2

To run DOMSrcExample, first right-click the project in the Projects window,
choose Properties, click Run, and type domexample. DOMSrcExample in the Main

Class field and domsrc2.xml in the Arguments field. Then right-click the project
and choose Run Project.

When you run DOM SrcExample, you will see output that begins like the follow-
ing:

run-domsrc:
Running DOM SrcExample.
Body contents:
Content is:

NameisbusinessList

Attribute name is generic

Attribute valueis 2.0

Attribute name is operator

Attribute value is www.ibm.com/services/uddi
Attribute name is truncated

Attribute valueisfalse

Attribute nameis xmins

Attribute value is urn:uddi-org:api_v2

If you run DOM SrcExample with the file uddimsg.xml or slidexml, you will see
runtime errors.

Attachments,java

The example Attachments.java, based on the code fragments in the sections Creat-
ing an AttachmentPart Object and Adding Content (page 72) and Accessing an
AttachmentPart Object (page 74), creates a message that has a text attachment
and an image attachment. It then retrieves the contents of the attachments and
prints the contents of the text attachment. You will find the code for Attachments
in the following directory:

<INSTALL>/j2eetutorial 14/exampl es/saaj/attachments/

99

../examples/saaj/attachments/src/Attachments.java

100

SOAP WITH ATTACHMENTS APl FOR JAVA

The Attachmentsjava program first creates a message in the usual way. It then cre-
ates an AttachmentPart for the text attachment:

AttachmentPart attachment1 = message.createAttachmentPart();

After it reads input from afileinto a string named stringContent, it sets the content
of the attachment to the value of the string and the type to text/plain and also sets a
content ID.

attachment1.setContent(stringContent, "text/plain");
attachment1.setContentl d("attached_text");

It then adds the attachment to the message:
message.addA ttachmentPart(attachment1);

The example uses a javax.activation.DataHandler object to hold a reference to the
graphic that constitutes the second attachment. It creates this attachment using
the form of the createAttachmentPart method that takes a DataHandler argument.

/I Create attachment part for image
URL url = new URL("file:///../xml-pic.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment2 =

message.createA ttachmentPart(dataHandl er);
attachment2.setContentld("attached_image");

message.addA ttachmentPart(attachment?2);

The exampl e then retrieves the attachments from the message. It displays the con-
tentld and contentType attributes of each attachment and the contents of the text
attachment.

Running Attachments

To run the application, follow these steps:

1. If you have not aready opened the Attachments project, choose
File—>Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial 14/examples/sagj/, Select the Attachments project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resolve Reference Problems. Select the

SOAPFAULTTEST.JAVA

“activation.jar” file/folder could not be found message and click Resolve. In thefile
chooser, select navigate to the lib directory in your application server
installation, select activationjar, and click OK. The IDE automatically
resolves the lacation of the other missing JAR files. Click Close.

3. Right-click the project in the Projects window, choose Properties, click
Run, and type addr.txt in the Arguments field. This fileisincluded with the
application. Click OK.

4. In the Projects window, right-click the project and choose Run Project.
5. In the Output window, the application displays the following output:

run;

Attachment attached_text has content type text/plain
Attachment contains:

Update address for Sunny Skies, Inc., to

10 Upbeat Street

Pleasant Grove, CA 95439

Attachment attached_image has content type image/jpeg

SOAPFaultTest.java

The example SOAPFaultTest java, based on the code fragments in the sections Cre-
ating and Populating a SOAPFault Object (page82) and Retrieving Fault
Information (page 83), creates a message that has a SOAPFault object. It then
retrieves the contents of the SOAPFault object and prints them. You will find the
code for SOAPFaultTest in the following directory:

<INSTALL>/j2eetutorial 14/exampl es/sagj/soapfaulttest/

Running SOAPFaultTest

To run the application, follow these steps:

1. If you have not aready opened the Attachments project, choose
File—>Open Project (Ctrl-Shift-O). In the file chooser, go to <INSTALL>/
j2eetutorial 14/examples/sagj/, Select the soapfaulttest project, and choose Open
Project Folder.

2. The project needs to know the location of some JAR files on its classpath.
Right-click the project and choose Resol ve Reference Problems. Select the
“activation.jar” file/folder could not be found message and click Resolve. In thefile
chooser, select navigate to the lib directory in your application server

101

../examples/saaj/fault/src/SOAPFaultTest.java

102

SOAP WITH ATTACHMENTS APl FOR JAVA

installation, select activationjar, and click OK. The IDE automatically
resolves the |ocation of the other missing JAR files. Click Close.

3. In the Projects window, right-click the project and choose Run Project.

4. In the Output window, the application displays the following output (line
breaks have been inserted in the message for readability):

Here iswhat the XML message looks like:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV ="http://schemas.xml soap.org/soap/envel ope/" >
<SOAP-ENV:Header/><SOAP-ENV:Body>
<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>
<faultstring>M essage does not have necessary info</faultstring>
<faultactor>http://gizmos.com/order</faultactor>

<detail>

<PO:order xmlns:PO="http://gizmos.com/orders/">

Quantity element does not have a value</PO:order>
<PO:confirmation xmins:PO="http://gizmos.com/confirm">
Incomplete address. no zip code</PO:confirmation>
</detail></SOAP-ENV:Fault>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP fault contains:
Fault code = SOAP-ENV:Client
Local name = Client
Namespace prefix = SOAP-ENV, bound to
http://schemas.xml soap.org/soap/envel ope/
Fault string = Message does not have necessary info
Fault actor = http://gizmos.com/order
Detail entry = Quantity element does not have avalue
Detail entry = Incomplete address. no zip code

Further Information

For more information about SAAJ, SOAP, and WS-1, see the following:

» SAAJ1.2 specification, available from
http://java.sun.com/xml/downl oads/sagj.html

* SAAJweb site:
http://java.sun.com/xml/saaj/

« WS- Basic Profile:

http://java.sun.com/xml/downloads/saaj.html
http://java.sun.com/xml/saaj/

FURTHER |NFORMATION 103

http://www.ws-i.org/Profiles/Basi¢/2003-08/
BasicProfile-1.0a.html

« JAXM web site:

http://java.sun.com/xml/jaxm/

http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html
http://java.sun.com/xml/jaxm/

104

SOAP WITH ATTACHMENTS APl FOR JAVA

A4

Enterprise Beans

E NTERPRISE beans are the J2EE components that implement Enterprise Java
Beans (EJB) technology. Enterprise beans run in the EJB container, a runtime
environment within the Sun Java System Application Server Platform Edition 8
(see Figure 1-5, page 10). Although transparent to the application devel oper, the
EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enter-
prise beans, which form the core of transactional J2EE applications.

What Isan Enterprise Bean?

Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods called checkinventoryLevel and orderProduct. By invoking these
methods, remote clients can access the inventory services provided by the appli-
cation.

Benefits of Enterprise Beans

For several reasons, enterprise beans ssimplify the development of large, distrib-
uted applications. First, because the EJB container provides system-level ser-

vices to enterprise beans, the bean developer can concentrate on solving business
105

106

ENTERPRISE BEANS

problems. The EJB container—and not the bean developer—is responsible for
system-level services such as transaction management and security authoriza-
tion.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server provided that they use the standard APIs.

When to Use Enter prise Beans

You should consider using enterprise beans if your application has any of the fol-
lowing requirements:

» The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but also their location will remain transparent to the
clients.

» Transactions must ensure data integrity. Enterprise beans support transac-
tions, the mechanisms that manage the concurrent access of shared abjects.

» The application will have a variety of clients. With only a few lines of
code, remote clients can easily locate enterprise beans. These clients can
be thin, various, and numerous.

TYPES OF ENTERPRISE BEANS 107

Types of Enterprise Beans

Table 4-1 summarizes the three types of enterprise beans. The following sec-
tions discuss each type in more detail.

Table4-1 Enterprise Bean Types

Enterprise Bean Type | Purpose

Session Performs atask for a client; implements aweb service
Entity Represents a business entity object that existsin persistent storage
M Driven Acts as alistener for the Java Message Service API, processing

messages asynchronously

What |s a Session Bean?

A session bean represents asingle client inside the Application Server. To access
an application that is deployed on the server, the client invokes the session
bean’'s methods. The session bean performs work for its client, shielding the cli-
ent from complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared; it can have only one client, in the same way that an inter-
active session can have only one user. Like an interactive session, a session bean
isnot persistent. (That is, its datais not saved to a database.) When the client ter-
minates, its session bean appears to terminate and is no longer associated with
the client.

For code samples, see Chapter 6.

Sate Management M odes

There are two types of session beans: stateless and stateful.

108

ENTERPRISE BEANS

Sateless Session Beans

A stateless session bean does not maintain a conversationa state for the client.
When a client invokes the method of a stateless bean, the bean’'s instance vari-
ables may contain a state, but only for the duration of the invocation. When the
method is finished, the state is no longer retained. Except during method invoce-
tion, al instances of a stateless bean are equivaent, alowing the EJB container
to assign an instance to any client.

Because statel ess session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean to secondary stor-
age. However, stateless session beans are never written to secondary storage.
Therefore, statel ess beans may offer better performance than stateful beans.

A stateless session bean can implement a web service, but other types of enter-
prise beans cannot.

Sateful Session Beans

The state of an object consists of the values of itsinstance variables. In a stateful
session bean, the instance variables represent the state of a unigque client-bean
session. Because the client interacts (“talks’) with its bean, this state is often
called the conversational state.

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

When to Use Session Beans

In general, you should use a session bean if the following circumstances hold:

» At any given time, only one client has access to the bean instance.

» The state of the bean is not persistent, existing only for a short period (per-
haps afew hours).

» The bean implements aweb service.

WHAT IS AN ENTITY BEAN? 109

Stateful session beans are appropriate if any of the following conditions are true:

» The bean’s state represents the interaction between the bean and a specific
client.

* Thebean needsto hold information about the client across method invoca-
tions.

» The bean mediates between the client and the other components of the
application, presenting asimplified view to the client.

« Behind the scenes, the bean manages the work flow of severa enterprise
beans. For an example, see the AccountControllerBean Ssession bean in
Chapter 36.

To improve performance, you might choose a statel ess session bean if it has any
of thesetraits:

* The bean’s state has no data for a specific client.

* Inasingle method invocation, the bean performs a generic task for all cli-
ents. For example, you might use a statel ess session bean to send an email
that confirms an online order.

» The bean fetches from a database a set of read-only data that is often used
by clients. Such abean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

What Isan Entity Bean?

An entity bean represents a business object in a persistent storage mechanism.
Some examples of business objects are customers, orders, and products. In the
Application Server, the persistent storage mechanism is a relational database.
Typically, each entity bean has an underlying table in a relational database, and
each instance of the bean corresponds to arow in that table. For code examples
of entity beans, please refer to Chapters 7 and 8.

What M akes Entity Beans Different from
Session Beans?

Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and can participate in relationships
with other entity beans.

110

ENTERPRISE BEANS

Persistence

Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the Application Server process. If you've worked with data-
bases, you're familiar with persistent data. The data in a database is persistent
because it still exists even after you shut down the database server or the applica-
tionsit services.

There are two types of persistence for entity beans. bean-managed and con-
tainer-managed. With bean-managed persistence, the entity bean code that you
write contains the calls that access the database. If your bean has container-man-
aged persistence, the EJB container automatically generates the necessary data-
base access calls. The code that you write for the entity bean does not include
these calls. For additional information, see the section Container-Managed
Persistence (page 111).

Shared Access

Entity beans can be shared by multiple clients. Because the clients might want to
change the same data, it's important that entity beans work within transactions.
Typically, the EJB container provides transaction management. In this case, you
specify the transaction attributes in the bean’s deployment descriptor. You do not
have to code the transaction boundaries in the bean; the container marks the
boundaries for you. See Chapter 30 for more information.

Primary Key

Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or
primary key, enables the client to locate a particular entity bean. For more infor-
mation, see the section Primary Keysfor Bean-Managed Persistence (page 204).

Relationships

Likeatablein arelational database, an entity bean may be related to other entity
beans. For example, in a college enroliment application, StudentBean and Course-
Bean would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed per-
sistence than those with container-managed persistence. With bean-managed

CONTAINER-MANAGED PERSISTENCE

persistence, the code that you write implements the relationships. But with con-
tainer-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed per-
sistence are often referred to as container-managed relationships.

Container-M anaged Persistence

The term container-managed persistence means that the EJB container handles
al database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As aresult, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won't need to modify or recompile the bean’s code. In short, your
entity beans are more portable if you use container-managed persistence than if
they use bean-managed persistence.

To generate the data access calls, the container needs information that you pro-
vide in the entity bean’s abstract schema.

Abstract Schema

Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’'s persistent fields and relationships. The term abstract distinguishes this
schema from the physical schema of the underlying data store. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans Query Lan-
guage (EJB QL). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (except findByPrimaryKey).
The EJB QL query determines the query that is executed by the EJB container
when the finder method is invoked. To learn more about EJB QL, see
Chapter 29.

11

112

ENTERPRISE BEANS

You'll probably find it helpful to sketch the abstract schema before writing any
code. Figure 4-1 represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed
further in the sections that follow.

QOrderBean

" CustomerBean

i ProductBean

Figure4-1 A High-Level View of an Abstract Schema

Persistent Fields

The persistent fields of an entity bean are stored in the underlying data store.
Collectively, these fields constitute the state of the bean. At runtime, the EJB
container automatically synchronizes this state with the database. During
deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table’s columns.

A CustomerBean entity bean, for example, might have persistent fields such as first-
Name, lastName, phone, and emailAddress. In container-managed persistence, these
fields are virtual. You declare them in the abstract schema, but you do not code
them as instance variables in the entity bean class. Instead, the persistent fields
are identified in the code by access methods (getters and setters).

CONTAINER-MANAGED PERSISTENCE

Relationship Fields

A relationship field islike aforeign key in adatabase table: it identifies arelated
bean. Like a persistent field, a relationship field is virtual and is defined in the
enterprise bean class via access methods. But unlike a persistent field, arelation-
ship field does not represent the bean’s state. Relationship fields are discussed
further in Direction in Container-Managed Relationships (page 113).

Multiplicity in Container-Managed Relationships

There are four types of multiplicities: one-to-one, one-to-many, many-to-one,
and many-to-many.

One-to-one: Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widget, StorageBinBean and WidgetBean would have a one-to-
one relationship.

One-to-many: An entity bean instance can be related to multiple instances of the
other entity bean. A sales order, for example, can have multiple lineitems. In the
order application, OrderBean would have a one-to-many relationship with Lineltem-
Bean.

Many-to-one: Multiple instances of an entity bean can be related to a single
instance of the other entity bean. This multiplicity is the opposite of a one-to-
many relationship. In the example just mentioned, from the perspective of
LineltemBean the relationship to OrderBean iS many-to-one.

Many-to-many: The entity bean instances can be related to multiple instances of
each other. For example, in college each course has many students, and every
student may take several courses. Therefore, in an enrollment application, Course-
Bean and StudentBean would have a many-to-many relationship.

Direction in Container-Managed Relationships

The direction of arelationship can be either bidirectional or unidirectional. In a
bidirectional relationship, each entity bean has arelationship field that refers to
the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows’ about its related object. For example, if OrderBean knows what Lineltem-
Bean instances it has and if LineltemBean knows what OrderBean it belongs to, then
they have abidirectional relationship.

113

114

ENTERPRISE BEANS

In aunidirectional relationship, only one entity bean has arelationship field that
refers to the other. For example, LineltemBean would have a relationship field that
identifies ProductBean, but ProductBean would not have a relationship field for
LineltemBean. |n other words, LineltemBean knows about ProductBean, but ProductBean
doesn’t know which LineltemBean instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query can navigate from LineltemBean tO ProductBean but cannot navi-
gate in the opposite direction. For OrderBean and LineltemBean, a query could navi-
gate in both directions, because these two beans have a bidirectional
relationship.

When to Use Entity Beans

You should probably use an entity bean under the following conditions:

» The bean represents a business entity and not a procedure. For example,
CreditCardBean would be an entity bean, but CreditCardVerifierBean would be a
session bean.

» Thebean's state must be persistent. If the bean instance terminates or if the

Application Server is shut down, the bean’s state till exists in persistent
storage (a database).

What Isa Message-Driven Bean?

A message-driven bean is an enterprise bean that alows J2EE applications to
process messages asynchronously. It normally acts as a IMS message listener,
which issimilar to an event listener except that it receives IM S messages instead
of events. The messages can be sent by any J2EE component—an application
client, another enterprise bean, or aweb component—or by a JM S application or
system that does not use J2EE technology. Message-driven beans can process
either IMS messages or other kinds of messages.

For asimple code sample, see Chapter 9. For more information about using mes-
sage-driven beans, see Using the IMS API in a J2EE Application (page 1248)
and Chapter 34.

WHAT MAKES MESSAGE-DRIVEN BEANS DIFFERENT FROM SESSION AND ENTITY BEANS? 115

What M akes M essage-Driven Beans Different
from Session and Entity Beans?

The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the section Defining Client Access with
Interfaces (page 116). Unlike a session or entity bean, a message-driven bean has
only abean class.

In several respects, a message-driven bean resembles a statel ess session bean.
* A message-driven bean’s instances retain no data or conversational state
for a specific client.

< All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instancesto allow streams of messages to be pro-
cessed concurrently.

A single message-driven bean can process messages from multiple clients.
The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a IMS APl connec-

tion, an open database connection, or an object reference to an enterprise bean
object.

Client components do not locate message-driven beans and invoke methods
directly on them. Instead, a client accesses a message-driven bean through IMS
by sending messages to the message destination for which the message-driven
bean class is the MessageListener. YOu assign a message-driven bean’s destination
during deployment by using Application Server resources.

Message-driven beans have the following characteristics:

» They execute upon receipt of asingle client message.
» They areinvoked asynchronously.
e They arerdatively short-lived.

» They do not represent directly shared data in the database, but they can
access and update this data.

» They can be transaction-aware.
e They are stateless.

When amessage arrives, the container calls the message-driven bean’s onMessage
method to process the message. The onMessage method normally casts the mes-

116

ENTERPRISE BEANS

sage to one of the five IM S message types and handles it in accordance with the
application’s business logic. The onMessage method can call helper methods, or it
can invoke a session or entity bean to process the information in the message or
to store it in a database.

A message can be delivered to a message-driven bean within a transaction con-
text, so all operations within the onMessage method are part of a single transac-
tion. If message processing is rolled back, the message will be redelivered. For
more information, see Chapter 9.

When to Use M essage-Driven Beans

Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

Defining Client Accesswith Interfaces

The material in this section applies only to session and entity beans and not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client can access a session or an entity bean only through the methods defined
in the bean's interfaces. These interfaces define the client’s view of a bean. All
other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, and database access calls—are hidden from the client.

Well-designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they also alow the beans to change internally without
affecting the clients. For example, even if you change your entity beans from
bean-managed to contai ner-managed persistence, you won't have to ater the cli-
ent code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it isimportant that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access alowed by the enterprise beans: remote, local, or web ser-
vice.

REMOTE CLIENTS

Remote Clients

A remote client of an enterprise bean has the following traits:

e It can run on a different machine and a different Java virtual machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different VM.)

« |t can be a web component, an application client, or another enterprise
bean.

» To aremote client, the location of the enterprise bean is transparent.

To create an enterprise bean that has remote access, you must code a remote
interface and a home interface. The remote interface defines the business meth-
ods that are specific to the bean. For example, the remote interface of a bean
named BankAccountBean might have business methods named deposit and credit.
The home interface defines the bean’s life-cycle methods: create and remove. For
entity beans, the home interface also defines finder methods and home methods.
Finder methods are used to locate entity beans. Home methods are business
methods that are invoked on all instances of an entity bean class. Figure 4-2
shows how the interfaces control the client’s view of an enterprise bean.

Remote Interface

deposit()
credit()

BankAccountBean

Home Interface

create()
remove()
findByPrimaryKey()

Figure4-2 Interfaces for an Enterprise Bean with Remote Access

117

118

ENTERPRISE BEANS

L ocal Clients

A local client has these characteristics:

e It must run in the same JVM as the enterprise bean it accesses.
* It can be aweb component or another enterprise bean.

» To the local client, the location of the enterprise bean it accesses is not
transparent.

It is often an entity bean that has a container-managed relationship with
another entity bean.

To build an enterprise bean that alows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods, and the local home interface defines its life-cycle and finder
methods.

L ocal Interfaces and Container-Managed
Relationships

If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not
abean isthe target. In Figure 4—1, for example, ProductBean is the target of a uni-
directional relationship with LineltemBean. Because LineltemBean accesses Product-
Bean locally, ProductBean must have the local interfaces. LineltemBean alsSo needs
local interfaces, not because of its relationship with ProductBean, but because it is
the target of arelationship with orderBean. And because the relationship between
LineltemBean and OrderBean is bidirectional, both beans must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB JAR file. The primary benefit
of this locality is increased performance: loca calls are usually faster than
remote calls.

DECIDING ON REMOTE OR LOCAL ACCESS

Deciding on Remote or Local Access

Whether to allow local or remote access depends on the following factors.

« Container-managed relationships: If an entity bean is the target of a con-

tainer-managed relationship, it must use local access.

 Tight or loose coupling of related beans: Tightly coupled beans depend on
one another. For example, a completed sales order must have one or more
lineitems, which cannot exist without the order to which they belong. The
OrderBean and LineltemBean entity beans that model this relationship are
tightly coupled. Tightly coupled beans are good candidates for local
access. Because they fit together as alogical unit, they probably call each
other often and would benefit from the increased performance that is pos-

sible with local access.

» Typeof client: If an enterprise bean is accessed by application clients, then
it should alow remote access. In a production environment, these clients
almost always run on different machines than the Application Server does.
If an enterprise bean’'s clients are web components or other enterprise
beans, then the type of access depends on how you want to distribute your

components.

» Component distribution: J2EE applications are scalable because their
server-side components can be distributed across multiple machines. In a
distributed application, for example, the web components may run on a
different server than do the enterprise beans they access. In this distributed

scenario, the enterprise beans should allow remote access.

» Performance: Because of factors such as network latency, remote calls
may be slower than local calls. On the other hand, if you distribute compo-
nents among different servers, you might improve the application’s overall
performance. Both of these statements are generalizations; actual perfor-
mance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect perfor-

mance.

If you aren’'t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility. In the future you
can distribute your components to accommodate growing demands on your

application.

Although it is uncommon, it is possible for an enterprise bean to allow both
remote and local access. Such a bean would require both remote and local inter-

faces.

119

120

ENTERPRISE BEANS

Web Service Clients

A web service client can access a J2EE application in two ways. First, the client
can access aweb service created with JAX-RPC. (For more information on JAX-
RPC, see Chapter 2, Building Web Services with JAX-RPC, page 29.) Second, a
web service client can invoke the business methods of a stateless session bean.
Other types of enterprise beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web ser-
vice client can access a statel ess session bean, whether or not the client is written
in the Java programming language. The client doesn’'t even “know” what tech-
nology implements the service—statel ess session bean, JAX-RPC, or some other
technology. In addition, enterprise beans and web components can be clients of
web services. This flexibility enables you to integrate J2EE applications with
web services.

A web service client accesses a stateless session bean through the bean’s web
service endpoint interface. Like a remote interface, a web service endpoint inter-
face defines the business methods of the bean. In contrast to aremote interface, a
web service endpoint interface is not accompanied by a home interface, which
defines the bean’s life-cycle methods. The only methods of the bean that may be
invoked by aweb service client are the business methods that are defined in the
web service endpoint interface.

For a code sample, see The HelloService Web Service Example (page 153).

M ethod Parameter s and Access

The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters but also to
method return values.

| solation

The parameters of remote calls are more isolated than those of local calls. With
remote calls, the client and bean operate on different copies of a parameter
object. If the client changes the value of the object, the value of the copy in the
bean does not change. This layer of isolation can help protect the bean if the cli-
ent accidentally modifies the data.

THE CONTENTS OF AN ENTERPRISE BEAN 121

In alocal call, both the client and the bean can modify the same parameter
object. In general, you should not rely on this side effect of local calls. Perhaps
someday you will want to distribute your components, replacing the local calls
with remote ones.

As with remote clients, web service clients operate on different copies of param-
eters than does the bean that implements the web service.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parametersin
remote methods should be relatively coarse-grained. A coarse-grained object
contains more data than a fine-grained one, so fewer access calls are required.
For the same reason, the parameters of the methods called by web service clients
should also be coarse-grained.

For example, suppose that a CustomerBean entity bean is accessed remotely. This
bean would have a single getter method that returns a CustomerDetails object,
which encapsulates all of the customer’s information. But if CustomerBean isto be
accessed locally, it could have a getter method for each instance variable: getFirst-
Name, getlastName, getPhoneNumber, and so forth. Because local calls are fast, the
multiple calls to these finer-grained getter methods would not significantly
degrade performance.

The Contents of an Enterprise Bean

To develop an enterprise bean, you must provide the following files:

» Deployment descriptor: An XML file that specifies information about the
bean such as its persistence type and transaction attributes. The deploytool
utility creates the deployment descriptor when you step through the New
Enterprise Bean wizard.

» Enterprise bean class: Implements the methods defined in the following
interfaces.

 Interfaces: The remote and home interfaces are required for remote access.
For local access, the local and local home interfaces are required. For
access by web service clients, the web service endpoint interface is
required. See the section Defining Client Access with
Interfaces (page 116). (Please note that these interfaces are not used by
message-driven beans.)

122

ENTERPRISE BEANS

» Helper classes: Other classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and can be used for dif-
ferent applications. To assemble a J2EE application, you package one or more
modules—such as EJB JAR files—into an EAR file, the archive file that holds
the application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the Application Server. You can
also deploy an EJB JAR that is not contained in an EAR file.

hesembly

Root

&ll .class files
for this EJB mudsd ule

= i

ejb-jar.sml MANIFEST.MF sun-cmp-mappings.cmi
sun-a|b-jar.oml

Figure4-3 Structure of an Enterprise Bean JAR

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it's useful to follow a
naming convention for your applications. Table 4-2 summarizes the conventions
for the example beansin thistutorial.

Table4-2 Naming Conventions for Enterprise Beans

THE LIFE CYCLES OF ENTERPRISE BEANS

Item Syntax Example
Enterprise bean name (DD?) <name>Bean AccountBean

EJB JAR display name (DD) <name>JAR AccountJAR
Enterprise bean class <name>Bean AccountBean
Home interface <name>Home AccountHome
Remote interface <name> Account

Local home interface <name>L ocalHome AccountLocalHome
Local interface <name>Local AccountLocal
Abstract schema (DD) <name> Account

a.DD means that the item is an element in the bean’s deployment descriptor.

TheLife Cycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean—session, entity, or message-driven—has a differ-

ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you

should skip this section and try out the code examplesfirst.

TheLife Cycle of a Stateful Session Bean

Figure 44 illustrates the stages that a session bean passes through during itslife-
time. The client initiates the life cycle by invoking the create method. The EJB
container instantiates the bean and then invokes the setSessionContext and ejbCreate
methods in the session bean. The bean is now ready to have its business methods

invoked.

123

124

ENTERPRISE BEANS

1. creais
2. gatSesgionConbaxt 1. remose
3. ajpCreate 2. p[bRemove

ejbPassivate

M Passive
ejbActivale
Figure4—4 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passi-
vate, the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the bean's ebPassvate method immediately
before passivating it. If aclient invokes a business method on the bean whileitis
in the passive stage, the EJB container activates the bean, calls the bean’s gbActi-
vate method, and then movesiit to the ready stage.

At the end of the life cycle, the client invokes the remove method, and the EJB
container calls the bean’s gbRemove method. The bean’sinstanceis ready for gar-
bage collection.

Your code controls the invocation of only two life-cycle methods: the create and
remove methods in the client. All other methods in Figure 44 are invoked by the
EJB container. The gbCreate method, for example, isinside the bean class, allow-
ing you to perform certain operations right after the bean is instantiated. For
example, you might wish to connect to a database in the ejbCreste method. See
Chapter 31 for more information.

TheLife Cycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its life cycle has only two
stages: nonexistent and ready for the invocation of business methods. Figure 4-5
illustrates the stages of a stateless session bean.

THE LIFE CYCLE OF AN ENTITY BEAN

Does Not
Exist

1. selSessionContext

2. gjbCreate ejbRemaove

Figure4-5 Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean

Figure 4—6 shows the stages that an entity bean passes through during its life-
time. After the EJB container creates the instance, it calls the setEntityContext
method of the entity bean class. The setEntityContext method passes the entity con-
text to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes the create method, causing the EJB container to call the ejbCreate
and ejbPostCreate methods. On the second path, the EJB container invokes the
gibActivate method. While an entity bean is in the ready stage, an it’s business
methods can be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
can invoke the remove method, which causes the EJB container to call the ejbRe-
move method. Second, the EJB container can invoke the ejbPassivate method.

125

126 ENTERPRISE BEANS

Does Not
Exist

setEntityContext unsatEntityContext

Pooled

ejbAstivate ejbPassivate
1. create
2. ejbCreate c L ——— 1. remove

3. ajbPostCreal 2. ajbRemove
Ready

Figure4—6 Life Cycle of an Entity Bean

At the end of the life cycle, the EJB container removes the instance from the
pool and invokes the unsetEntityContext method.

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, the ejbCreate and ejbActivate methods must assign a value
to the primary key. If the primary key is incorrect, the ejblLoad and ejbStore
methods cannot synchronize the instance variables with the database. In the
section The SavingsAccountBean Example (page 167), the gbCreate method
assigns the primary key from one of the input parameters. The gjbActivate method
sets the primary key (id) asfollows:

id = (String)context.getPrimaryKey();

THE LIFE CYCLE OF A MESSAGE-DRIVEN BEAN

In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in the ejbPassivate method.

TheLife Cycle of a Message-Driven Bean

Figure 4—7 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For
each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls the setMessageDrivenContext method to pass the context object to the
instance.

2. It callsthe instance’s ejbCreate method.

Does Not
Exist

1. setMessage DrivenContext
2. gjbCreale

onMessage

Figure4-7 Life Cycle of aMessage-Driven Bean
Like a statel ess session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the gjbRemove method. The bean’'s
instance is then ready for garbage collection.

127

128 ENTERPRISE BEANS

Further Information

For further information on Enterprise JavaBeans technology, see the following:
» Enterprise JavaBeans 2.1 specification:
http://java.sun.com/products/ejb/docs.html

» The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

5

Getting Sarted with
Enterprise Beans

T HIS chapter shows how to develop, deploy, and run a simple J2EE applica-
tion named Convert er App. The purpose of Converter App is to calculate cur-
rency conversions between yen and eurodollars. Converter App consists of an
enterprise bean, which performs the calculations, and aweb client.

Here's an overview of the steps you' Il follow in this chapter:

1. Create the J2EE application: Convert er App.
2. Create the enterprise bean: Convert er Bean.
3. Create the web client in Convert er WAR.
4. Deploy Conver t er App onto the server.
5. Using a browser, run the web client.
Before proceeding, make sure that you’ ve done the following:

* Read Chapter 1.
« Become familiar with enterprise beans (see Chapter 4).

129

130 GETTING STARTED WITH ENTERPRISE BEANS

Creating the J2EE Application

In this section, you'll create a project named Convert er App to store the J2EE
application.
1. Inthe IDE, choose File—>New Project (Ctrl-Shift-N).

2. From the Enterprise category, select Enterprise Application and click
Next.

3. Name the project Convert er App, specify a location for the project and
click Finish.

This wizard actually creates three projects: one for the enterprise application,
one for the EJB module, and one for the web module.

Creating the Enterprise Bean

The enterprise bean in our example is a statel ess session bean called Convert er -
Bean. The source code for ConverterBean is in the
<INSTALL>/j 2eet ut ori al 14/ exanpl es/ ej b/ convert er/ Convert er App/ Con-
vert er App-ej b/ directory.

Creating Conver t er Bean requires these steps:

1. Generating the bean classes and interfaces from a NetBeans template
2. Adding business methods to the enterprise bean.

Creating the Converter Bean Enterprise Bean

The enterprise bean templates automatically create all of the classes and inter-
faces necessary for the enterprise bean and register the enterprise bean in the
EJB modul€e’s deployment descriptor.

1. In the Projects window, right-click the ConverterApp-EJBModule node
and choose New—»Session Bean.

2. In the EJB Name field, type Convert er. In the Package field, type con-
vert er . Set the bean to be stateless and remote and click Finish.

CREATING THE CONVERTERBEAN ENTERPRISE BEAN

The IDE creates the following classes:

Convert er Bean. j ava. The enterprise bean class. All of the EJB infra-
structure methods are generated automatically and are hidden in a code
fold.

Convert er Renot e. j ava. The remote interface. The remote interface usu-
aly defines the business methods that aclient can call. The business meth-
odsareimplemented in the enterprise bean code. Because the IDE enforces
best coding practices, it actually registers al of the business methodsin a
remote business interface, which the remote interface extends.

Conver t er Renot eBusi ness. j ava. The business interface. Presently this
class is empty, but as we add business methods to the bean this class will
be populated.

Convert er Renot eHone. j ava. The home interface. A home interface
defines the methods that allow aclient to create, find, or remove an enter-
prise bean.

Adding Business M ethods

1

Expand the Enterprise JavaBeans node, right-click the ConverterSB node,
and choose Add—Business Method.

. Inthe dialog box, type dol | ar ToYen inthe Name field and Bi gDeci mal in

the Return Type field. In the Parameters tab, click Add to add aBi gDeci -
mal parameter nameddol | ar s. Then click OK to add the business method.

. Repeat steps 1 and 2 to add a business method called yenToEur o that

returns aBi gDeci mal and has one Bi gDeci mal parameter named yen.

. Press Alt-Shift-F to generate an import statement for j ava. mat h. bi gDec-

i mal .

. Expand the Source Packages node and the conver t er package node. Dou-

ble-click convert er Renot eBusi ness. j ava to open it in the Source Edi-
tor. Notice that the IDE has automatically declared the dol | ar ToYen and
yenToEur o methods in the interface. Press Alt-Shift-F to generate an
import statement for j ava. mat h. bi gDeci mal .

. In Convert er Bean. j ava, add the following field declarations right below

the class declaration:

Bi gDeci mal yenRate = new Bi gDeci nal ("121. 6000");
Bi gDeci nal euroRate = new Bi gDeci mal ("0.0077");

. In ConverterBean. java, implement the dol | ar ToYen and yenToEur o

methods as follows:

131

132 GETTING STARTED WITH ENTERPRISE BEANS

publ i c Bi gDeci mal dol | ar ToYen(Bi gDeci mal dollars) {
Bi gDeci nal result = dollars.multiply(yenRate);
return result.setScal e(2, BigDecinal.ROUND _UP);

}

publ i c Bi gDeci mal yenToEuro(Bi gDeci mal yen) {
Bi gDeci mal result = yen.multiply(euroRate);
return result.setScal e(2, BigDecinal.ROUND_UP);

}
The full source code for the Convert er Bean class follows.

i mport java.rm . RenoteException;
i mport javax. ejb. Sessi onBean;

i mport javax. ejb. Sessi onCont ext;
i mport java. math. *;

public class ConverterBean inplenents SessionBean {

private SessionContext context;
Bi gDeci mal yenRate = new Bi gDeci mal ("121. 6000");
Bi gDeci nal euroRate = new Bi gDeci nal ("0.0077");

public void set Sessi onCont ext (Sessi onCont ext aContext) {
cont ext = aCont ext;

}

public void ej bRenove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbCreate() {}

publ i c Bi gDeci mal dol | ar ToYen(Bi gDeci mal dollars) {
Bi gDeci mal result = dollars.multiply(yenRate);
return result.setScal e(2, Bi gDeci mal . ROUND_UP) ;

}

publ i c Bi gDeci mal yenToEuro(Bi gDeci mal yen) {
Bi gDeci mal result = yen.multiply(euroRate);
return result.setScal e(2, Bi gDeci mal . ROUND_UP) ;

}

CREATING THE WEB CLIENT 133

Creating the Web Client

The web client is contained in the <INSTALL>/j 2eetutori al 14/ exam
pl es/ ej b/ convert er/ Convert er App/ Conver t er App-war/ directory. The web
client isimplemented in aservlet, ConverterServl et . j ava.

Coding the Web Client

When you access an enterprise bean from a servlet, the IDE provides tools that
do much of the work for you. For instance, the IDE automatically generates
lookup code for the bean and adds the bean reference to the web module's
deployment descriptors.

1. In the Projects window, right-click the ConverterApp-WebModule node
and choose New— Servlet.

2. Namethe servlet Cconverter Servl et and placeit in apackage called con-
verter. Click Next.

3. Leave the default settings for all of the information in the last page of the
wizard and click Finish.

L ocating the Home Interface

1. In the Source Editor, right-click anywhere in the body of the Convert -
er Servl et classand choose Enterprise Resources—Call Enterprise Bean.

2. Inthedialog box, select ConverterSB and click OK. The|DE generatesthe
| ookupConvert er Bean method at the bottom of thefile.
The IDE adds the | ookupConver t er Bean method to the servlet and registers the
bean reference in the web module's deployment descriptors. The lookup code
does the following:

1. Create an initial naming context.
j avax. nam ng. Context ¢ = new javax. nam ng. | nitial Context();

The Cont ext interface is part of the Java Naming and Directory Interface
(INDI). A naming context is a set of name-to-object bindings. A name
that is bound within a context is the INDI name of the object.

An Initial Context object, which implements the Context interface,
provides the starting point for the resolution of names. All naming opera-
tions are relative to a context.

GETTING STARTED WITH ENTERPRISE BEANS

2. Obtain the environment naming context of the web client and retrievesthe
object bound to the name ej b/ Convert er Bean.

oj ect renote = c. | ookup("java: conp/ env/ ej b/ ConverterBean");

Thej ava: conp/ env nameis bound to the environment naming context of
the Conver t er App- WebMbdul e component.

The ej b/ Convert er Bean name is bound to an enterprise bean reference,
a logica name for the home of an enterprise bean. In this case, the
ej b/ Convert er Bean name refers to the Convert er Renot eHorre 0Object.
The names of enterprise beans should reside in the j ava: conp/ env/ ej b
subcontext.

3. Narrow the reference to a Conver t er Renot eHome Object.

converter. Converter Renot eHone rv =
(converter. Convert er Renot eHone)
javax. rm . Port abl eRenot eCbj ect . narr ow(r enot e,
converter. Convert er Renot eHone. cl ass) ;

4. Creates an instance of the Convert er Bean enterprise bean:
return rv.create();

| nvoking Business M ethods

1. In the Source Editor, go to the pr ocessRequest method and remove the
comment symbols that comment out the text betweenpPrintWiter out =
response. getWiter(); and out.close();. (You can put the insertion
point on each line and press Ctrl-E to delete the entire line.)

2. Add the following code in the body of the servlet, between
out. println("<body>"); andout.println("</body>");:

out. println("<hl><cent er>Converter</center></hl>");
out. println("<hr>");
out.println("<p>Enter an anmpunt to convert:</p>");
out. println("<form nethod=\"get\">");
out.println("<input type=\"text\"

name=\"anmount\" size=\"25\">");
out.println("
");
out.println("<p>");
out.println("<input type=\"submt\" val ue=\"Submt\">");
out.println("<input type=\"reset\" val ue=\"Reset\">");
out.println("</fornp");
String anmount = request.get Paraneter("anount");
if (anpbunt !'= null && amount.length() > 0) {

SPECIFYING THE ENTERPRISE APPLICATION’S DEFAULT URL

try {
converter. ConverterRenote converter;
converter = | ookupConverterBean();

java. mat h. BigDecimal d =

new j ava. mat h. Bi gDeci nal (anmount) ;
out.println("<p>");
out.println("<p>");
out.println(anount + " Dollars are

+ converter.dol |l arToYen(d) + " Yen.");
out.println("<p>");
out.println(anbunt + " Yen are "

+ converter.yenToEuro(d) + " Euro.");

converter.remove();
} catch (Exception e)({
out. println("Cannot | ookup or execute EJB!'");

}

Specifying the Enterprise Application’s
Default URL

By default, the IDE opens the web modul€’s index.jsp page when you run the
enterprise application. You need to change this setting to open Convert er Ser v-
| et.java instead.

1. In the Projects window, right-click the ConverterApp project node and
choose Properties.

2. Click Run in the left pane of the dialog box.

3. Type/ ConverterServl et inthe Relative URL field and click OK.

Deploying the J2EE Application

Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. In the Projects window, right-click the ConverterApp node and choose
Run Project.

135

136 GETTING STARTED WITH ENTERPRISE BEANS

The IDE does all of the following:

» Startsthe application server if it is not already started.

» Buildsthe ConverterApp project and the projects for each of its modules.
You can view the build ouputsin the Files window.

» Deploys converterapp.ear to the application server.

e Opens your default web browser a the following URL:
http:// <host >: <port >/ Convert er App- WebModul e/ Convert er Ser vl et

Running the Web Client

As stated above, the IDE automatically runs the web client every time you run
the ConverterApp project. Once the enterprise application is deployed to a run-
ning application server, you can access the application client a any time by
pointing your browser at the following URL. Replace <host > with the name of
the host running the Application Server. If your browser is running on the same
host as the Application Server, you can replace <host > with | ocal host .

htt p:// <host >: <port >/ Convert er App- WebModul e/ Convert er Ser vl et

After entering 100 in the input field and clicking Submit, you should see the
screen shown in Figure 5-1.

MODIFYING THE J2EE APPLICATION

R T — sioix

~ B Bl Wew Go Peokmarks Took Windesw Help

4 Q: o O I\J [..Ir:||-|.1-x.|lw.:a:m_'--rwwl-_'.mu.l-l-u]@ :50

- i Hore heoolmarks

Converter

E'.I:L'I an amount B Converl

I—
Submit | Fase

100 dedlars are 12160000 Yen
T E

100 Yen are 0.77 Buare

O 6 O o= =g

Figure5-1 Converter App Web Client

Modifying the J2EE Application

The Application Server and the NetBeans IDE support iterative development.
Whenever you make a change to a J2EE application, you must redeploy the
application.

Modifying a Deployment Setting

To modify a deployment setting of Convert er App, you edit the appropriate field
in the deployment descriptors and redeploy. For example, to change a JNDI
name from ATypo to Conver t er Bean, you would follow these steps.

1. In the Projects window, expand the Configuration Files node for the Con-
verterApp-EJBModule project and double-click sun- ej b-j ar. xni .

2. In the left pane of the deployment descriptor editor, expand the Sun Con-
figuration node and select ConverterBean [EJB].

3. Inthe INDI Name field, enter ej b/ Convert er Bean.

137

138 GETTING STARTED WITH ENTERPRISE BEANS

4. In the Projects window, right-click the ConverterApp project and choose
Run Project. The IDE savesall thefiles, rebuildsthe project, and redeploys
it to the application server.

6

Session Bean Examples

&SSI ON beans are powerful because they extend the reach of your clientsinto
remote servers. In Chapter 5, you built a stateless session bean named Convertt -
er Bean. This chapter examines the source code of three more session beans:

e CartBean: astateful session bean that is accessed by aremote client

* Hel | 0Ser vi ceBean: astatel ess session bean that implementsaweb service

* Ti mer Sessi onBean: a stateless session bean that sets atimer

The CartBean Example Application

The Cart Bean session bean represents a shopping cart in an online bookstore.
The bean’s client can add a book to the cart, remove abook, or retrieve the cart’s
contents. To construct the CartBean example, you need to create the following
components:

e Cart EJB module

e Cartdient application
The cart EJB module contains the session bean and the interfaces. When creat-
ing the session bean, the IDE creates the following components:

e Session bean class (Car t Bean)

» Remote interface (Car t Renot e)

» Home interface (Car t Renot eHone)

« Businessinterface (Car t Renot eBusi ness)

139

140

SESSION BEAN EXAMPLES

All session beans require a session bean class. All enterprise beans that permit
remote access must have a home and a remote interface.

To meet the needs of a specific application, an enterprise bean may also need
some helper classes. The CartBean session bean uses two helper classes
(BookException and I dVerifier) which are discussed in the section Helper
Classes.

The source code for this example is located in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cart/ directory.

Creating the Cart EJB Project

In the IDE, you first need to create a project for the EJB module for the session
bean.
1. Choose File—>New Project (Ctrl-Shift-N).

2. Inthe New Project wizard, choose the Enterprise template category, select
EJB Modulein the Projects pane and click Next.

3. Typecart asthe Project Name, specify a Project Location and click Fin-
ish.
The Cart module appears in the Projects window of the IDE. The next step is to
add a session bean to the module.

Creating the Session Bean

For this example, you create a session bean class called Car t Bean. Like any ses-
sion bean, the Car t Bean class must meet these requirements:

» |t implementsthe Sessi onBean interface.

» Theclassisdefined aspubl i c.

* The class cannot be defined asabstract or final .

* |t implements one or more ej bCr eat e methods.

* It implements the business methods.

* It containsapubl i ¢ constructor with no parameters.

* It must not definethef i nal i ze method.

CREATING THE CART EJB PROJECT

When you create the session bean in the IDE, the required infrastructure methods
and session bean interfaces are generated automatically.

1. Right-click the Cart node in the Projects window and choose New— Ses-
sion Bean.

2. Typecart asthe EJB Name, cart asthe Package name, and select State-
ful and Remote as the session and interface types (desel ect the Local inter-
face type). Then click Finish.

The IDE creates the Cart session bean under the Enterprise Beans node and
opens the cart Bean classin the Source Editor. You can see that the Car t Bean
class automatically implements the remote interfaces and also creates the
required session bean infrastructure methods.

The Cart session bean interface declares the ej bRenove, ej bAct i vat e, ej bPas-
sivate, and set Sessi onCont ext methods. The Cart Bean class doesn't use
these methods, but it must implement them because they are declared in the Ses-
si onBean interface. Consequently, these methods are empty in the Cart Bean
class. These required methods are hidden in the code fold in the Source Editor.
Click the + sign to the left of the code fold to inspect these methods.

You now need to add some private fields to the class declaration. Add the fol-
lowing to the class, after the private javax. ej b. Sessi onCont ext cont ext;
statement:

private String customer Nane;
private String custonerld;
private Vector contents;

When you add the private Vector contents field, the IDE will indicate an
error because you have not yet imported the j ava. uti | . vect or library. To add
the necessary import statements, place the insertion point anywhere in the class
and press Alt-Shift-F to generate the following import statements:

i mport java.util.Vector;
i mport javax. ejb. Creat eExcepti on;

You can now start adding the create methods and business methods to the class,
but for this example you should first create the two helper classes used by the
application.

141

142

SESSION BEAN EXAMPLES

Helper Classes

The Car t Bean session bean has two helper classes: BookException and | dveri -
fier. The BookExcept i on isthrown by the r enoveBook method, and the I dver -
i fier validates the custonerid in one of the ej bCreate methods. Helper
classes must reside in the EJB JAR file that contains the enterprise bean class.
You will use the IDE's Java Exception wizard to create the BookExcepti on
class, then you will create a new Java class and add the code for the | dveri fi er
helper class

1. Right-click the Source Packages node and choose New—Java Exception.
2. Type BookExcept i on as the Class Name and except i on as the Package
name, ensuring that Source Packagesis selected asthe Location, and click
Finish.
The IDE generates the BookExcept i on class and opens the class in the Source
Editor. The class has the following code:

package excepti on;
public class BookException extends java.lang. Excepti on{

/** Creates a new i nstance of BookException */
publ i ¢ BookException() {

}
/**

* Constructs an instance of <code>BookExcepti on</code> with
the specified detail message.
* @aram nsg the detail nmessage.
*/
publ i c BookException(String nsg) {
super (msg) ;
}
}

Now you create the second helper classcalled | dveri fi er.

1. Right-click the Source Packages node and choose New—Java Class.

2. Typel dverifier astheClassNameandut i | asthe Package name, ensur-
ing that Source Packagesis selected as the Location, and click Finish.

CREATING THE CART EJB PROJECT 143

3. Inthe Source Editor, add the following method to the method in the 1 dver -
ifier class:

public bool ean validate(String id) {
bool ean result = true;

for(int i =0; i <id.length(); i++) {
if(Character.isDigit(id.charAt(i)) == fal se)
result = fal se;

}

return result;

}

Now that you have created the helper classes, you can add the create methods
and business methods to the cart Bean class. When you add the methods, the
IDE adds the appropriate code to the interfaces.

The g bCreate M ethods

You will now add two create methods to the Cart Bean class. To add the create
methods in the IDE, use the Add Create Method contextual menu to generate the
methods and add the appropriate code to the interfaces.

1. In the Source Editor, right-click in the body of the Cart Bean class and
select EJB Methods —Add Create M ethod from the contextual menu.

2. Typecr eat e in the Name field, ensure that the Remote box is selected so
that the method is called in the remote interfaces and click Add in the
parameter tab.

3. For the new parameter, select j ava. | ang. Stri ng for the Type, type per -
son in the Name field, and then click OK to close each dialog box.

4. The IDE addsthe ej bCr eat e method to the Car t Bean class.
5. Now add the following code to the create method:

if (person == null) {
t hrow new Creat eException("Null person not
al lowed. ");

} else {

cust oner Nane = person;
}
customerld = "0";
contents = new Vector();

SESSION BEAN EXAMPLES

6. You will now add a second create method to the Car t Bean class. Follow
steps 1-5 above for generating a create method, this time adding the fol-
lowing two parameters, and in this order:

e java.lang. String person
e java.lang.String id
7. Add the following code to the method you created in step 6:

if (person == null) {
t hrow new Creat eException("Null person not
al l owed. ");

} else {

cust omer Name = person;
}
custonerld = "0";
contents = new Vector();

IdVerifier idChecker = new ldVerifier();
if (idChecker.validate(id)) {

custonerld = id;

} else {

throw new CreateException("Invalid id: "+ id);
}

contents = new Vector();

Because an enterprise bean runs inside an EJB container, a client cannot directly
instantiate the bean. Only the EJB container can instantiate an enterprise bean.
During instantiation, the example program performs the following steps.

1. Theclient invokes a create method on the home object:
Cart shoppi ngCart = home. create("Duke DeEarl","123");
2. The EJB container instantiates the enterprise bean.
3. The EJB container invokes the appropriate ej bCr eat e method in Cart -

Bean.

public voi d ej bCreate(java.lang. String person,
java.lang. String id)throws CreateException {

Typically, an ej bCr eat e method initializes the state of the enterprise bean. The
preceding ej bCreat e method, for example, initializes the cust omer Name and
cust oner | d variables by using the arguments passed by the ej bCr eat e method.

CREATING THE CART EJB PROJECT

An enterprise bean must have one or more ej bCr eat e methods. The signatures
of the methods must meet the following requirements:

* The access control modifier must be publ i c.
e Thereturn type must bevoi d.

« |f the bean allows remote access, the arguments must be legal typesfor the
Java Remote Method Invocation (Java RMI) API.

* The modifier cannot bestatic orfinal .

The throws clause can include the j avax. ej b. Cr eat eExcepti on and other
exceptions that are specific to your application. The ej bCr eat e method usually
throws a Cr eat eExcept i on if an input parameter isinvalid.

Business M ethods

The primary purpose of a session bean is to run business tasks for the client. The
client invokes business methods on the remote object reference that is returned
by the ej bcr eat e method. From the client’s perspective, the business methods
appear to run locally, but they actually run remotely in the session bean. The
business methods that a client can invoke are declared in the business interface.
The following code snippet shows how the Cart d i ent program invokes the
business methods:

Cart shoppi ngCart = hone. create("Duke DeEarl", "123");

shoppi ngCart . addBook(" The Martian Chronicles");
shoppi ngCart. renoveBook("Alice In Wnderland");
bookLi st = shoppi ngCart. get Contents();

The signature of a business method must conform to these rules:

» The method name must not conflict with one defined by the EJB architec-
ture. For example, you cannot call a business method ej bCreate or
ej bActivate.

* The access control modifier must be publ i c.

« If the bean allows remote access, the arguments and return types must be
legal typesfor the JavaRMI API.

¢ The modifier must not bestatic orfinal.

When you add business methods in the IDE, you can use the Add Business
Method contextual menu to generate the methods. When you do this, the IDE

145

146 SESSION BEAN EXAMPLES

adds the appropriate code to the interfaces. In this example, the business meth-
ods are added to the Car t Bean class and the Car t Renot eBusi ness interface.

1. In the Source Editor, right-click in the body of the Cart Bean class and
select EJB Methods —Add Business Method from the contextual menu to
open the Add Business Method dialog box.

2. Enter addBook in the Name field, select voi d as the Return type, and
ensure that the Remote box is selected so that the method is called in the
remote interfaces. Add a parameter and select j ava. | ang. Stri ng for the
Type, enter ti t1 e in the Name field, and click OK in each dialog box to
generate the method.

3. In the Source Editor, edit the addBook business method in the Cart Bean
class so that the method looks like this:

public void addBook(java.lang.String title) {
contents.add(title);

}

Now follow the steps above to create ther enoveBook and get Cont ent s business
methods with the following code:

public void renpveBook(java.lang.String title) throws
BookException {
bool ean result = contents.renove(title);
if (result == false) {
t hrow new BookException(title + "not in cart.");

}
}

public Vector getContents() {
return contents;

}

The t hr ows clause can include exceptions that you define for your application.
Ther enoveBook method, for example, throws the BookExcept i on if the book is
not in the cart. To add the exception in the IDE using the Add Business Method
dialog box, click Add in the Exceptions tab and type BookExcept i on.

When creating the get Cont ents business method in the IDE, you can type
Vect or in the Return field in the Add Business Method dialog box.

To indicate a system-level problem, such as the inability to connect to a data-
base, a business method should throw the j avax. ej b. EJBExcepti on. When a
business method throws an EJBExcept i on, the container wrapsit in a Renot eEx-

SESSION BEAN INTERFACES

cepti on, which is caught by the client. The container will not wrap application
exceptions such as BookExcepti on. Because EJBException is a subclass of
Runt i meExcept i on, you do not need to include it in the t hr ows clause of the
business method.

Managing Your Import Statements

After you have added your create methods and busi ness methods, you need to fix
your import statements. Import statements can be added manually, or the IDE
can check and fix any import statements in the class. Place the insertion point
anywhere in the body of the class in the Source Editor and press Alt-Shift-F to
generate the necessary import statements. The IDE removes any unused import
statements and adds any missing important statements.

Your import statements for the car t Bean class should contain the following:

i mport exception. BookExcepti on;

i mport java.util.Vector;

i nport javax. ejb. Creat eExcepti on;
import util.ldVerifier;

Notice that the IDE adds the import statements for our two helper classes.

You may need to fix or add import statements in the business interfaces. In the
CartBean example, you need to fix the imports for the remote business interface
(Car t Renot eBusi ness).

Session Bean | nterfaces

When you create a session bean in the IDE, the IDE generates the bean structure
according to the best practice EJB design patterns. This includes the creation of
the bean interfaces. Because the CartBean example uses a remote interface and
does not need alocal interface, the IDE creates the following interfaces:

» Home interface (Car t Renot eHone)

» Businessinterface (Car t Renot eBusi ness)

* Remote interface (Cart Renot e)
A session bean may have alocal interface instead of, or in addition to, a remote
interface. Generally, a local interface is used when the bean is to be used in the

same JVM and aremote interface is used when the bean isto be used in adistrib-
uted environment.

147

148

SESSION BEAN EXAMPLES

Home Interface

A home interface extends the j avax. ej b. EJBHone interface. For a session bean,
the purpose of the home interface is to define the cr eat e methods that a remote
client can invoke. The cart d i ent program, for example, invokes this creat e
method:

Cart shoppingCart = home.create("Duke DeEarl", "123");

Every create method in the home interface corresponds to an ej bCreate
method in the bean class. When you add cr eat e methods to your session bean
using Add Create Method, the corresponding methods are automatically added
to the home interface. The signatures of the ej bCr eat e methods in the Car t Bean
classfollow:

public void ejbCreate()

public void ejbCreate(java.lang. String person) throws
Cr eat eException

public voi d ej bCreate(java.l ang. String person, java.lang. String
id)
throws CreateException

Compare the ej bCr eat e signatures with those of the creat e methods in the
Car t Renot eHorre home interface:

public interface CartRenoteHone extends javax.ejb. EJBHonme {
cart.CartRenote create() throws
java. rm . Renot eExcepti on,
j avax. ej b. Cr eat eExcepti on;
cart.CartRenote create(java.lang. String person) throws
java. rm . Renpt eExcepti on,
j avax. ej b. Cr eat eExcepti on;
cart.CartRenote create(java.lang. String person, String id)
t hr ows
j ava. rm . Renot eExcepti on,
j avax. ej b. Cr eat eExcepti on;

}

SESSION BEAN INTERFACES 149

The signatures of the ej bCr eat e and cr eat e methods are similar, but they differ
in important ways. Defining the signatures of the creat e methods of a home
interface follow certain rules.

» The number and types of argumentsin acr eat e method must match those
of its corresponding ej bCr eat e method.

» The arguments and return type of the cr eat e method must be valid RMI
types.

* A creat e method returns the remote interface type of the enterprise bean.
(But an ej bCr eat e method returnsvoi d.)

e The throws clause of the create method must include the
java. rni . Renot eExcept i on and thej avax. ej b. Cr eat eExcept i on.

Remote I nterface

The remote interface is used when the bean isto be used in adistributed environ-
ment. The remote interface extends j avax. ej b. EJBObj ect and identifies the
business interface whose methods may be invoked from a non-local virtual
machine. The remote interface extends the remote business interface, and the
bean class only implements the business interface.

Here isthe source code for the Car t Renot e remote interface:

public interface CartRenpte extends javax.ejb. EJBObject,
cart. Cart Renot eBusi ness{

}

The remote interface is empty because you do not need to define your methods
in the remote interface. The business methods are defined in the business inter-
face.

Business | nterface

The business interface defines the business methods that a remote client can
invoke. Here is the source code for the Car t Renot eBusi ness business interface:

i mport java.util.*;
i mport java.exception. BookExcepti on;

public interface CartRenoteBusiness {

150

SESSION BEAN EXAMPLES

voi d addBook(java.lang. String title) throws
java. rm . Renot eExcepti on;
voi d renoveBook(java.lang. String title) throws
BookException, java.rm .RenoteException;
Vector getContents() throws java.rm . RenpteException;

}

The method definitions in a business interface must follow these rules:

» Each method in the business interface must match a method implemented
in the enterprise bean class.

» The signatures of the methods in the business interface must be identical
to the signatures of the corresponding methodsin the enterprise bean class.

» The arguments and return values must be valid RMI types.
Thet hr ows clause must includethej ava. r ni . Renpt eExcept i on.

In this example, the methods in the business interface require you to import
libraries. Press Alt-Shift-F to generate the necessary import statments.

Building and Deploying the Application

Now that you have finished creating the Cart EJB module, the next step is to
build and deploy the application. You then run the client application to start the
session bean. The source files for the example are available in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cart directory.

1. In the Projects window, right-click the Cart node and select Build Project
from the contextual menu.

2. Look at the Output window to ensure the application was built success-
fully.

3. Inthe Projects window, right-click the Cart node and select Deploy Project
from the contextual menu.

The deployed application is visible in the Runtime window of the IDE. To see
the deployed application, expand the EJB Modules node in the Applications
node of the server instance. You can undeploy and disable the application in the
Runtime window.

THE CARTCLIENT APPLICATION

The CartClient Application

Now that you have created the session bean, you are ready to run the client appli-
cation. You can choose to either create the CartClient application or Opening the
CartClient Project (page 153) located in the
<INSTALL>/ j 2eet ut or i al 14/ exanpl es/ ej b/ cart/ directory, in which case you
need to resolve the references to libraries on the project’s classpath.

Creating the CartClient Application

You can create the J2EE application named Cart d i ent inthe IDE.

1. Choose File—New Project (Ctrl-Shift-N) from the main menu.

2. Choose General from the Categories pane and Java Application in the
Projects pane and click Next.

3. Enter cart d i ent asthe Project Name, specify a Location for the project
and click Finish to create the project.

4. Right-click the CartClient node and choose Properties from the contextual
menu.

5. In the Properties dialog box, choose Libraries in the Categories pane and
click Add JAR/Folder and add the j 2ee. j ar and appserv-rt.jar tothe
project classpath. Now click Add Project and add the Cart EJB module to
the project classpath. Click OK to close the Properties dialog box.

6. Add the following code to the main method:

try{
Context ctx = new Initial Context();

hj ect obj Ref = ctx.|ookup("ejb/CartBean");
Car t Renot eHone hone =

151

152 SESSION BEAN EXAMPLES

(Cart Renot eHone) Por t abl eRenpt ehj ect . narr ow(obj Ref,
Cart Renpt eHonre. cl ass) ;

Cart Renpt e shoppi ngCart = hone. create("Duke DeEarl", "123");

shoppi ngCart . addBook(" The Martian Chronicles");
shoppi ngCart . addBook(" 2001 A Space Odyssey");
shoppi ngCart . addBook(" The Left Hand of Darkness");

Vect or bookLi st = new Vector();
bookLi st = shoppi ngCart. get Contents();
Enunerati on enunmer = bookLi st. el enents();

whil e (enuner. hasMoreEl enents()) {
String title = (String) enuner.nextEl enent();

Systemout.println(title);
}

shoppi ngCart . renoveBook("Alice in Wnderland");
shoppi ngCart.renmove();

System exit(0);

}cat ch(BookException ex){
Systemerr.println("Caught a BookException " +
ex. get Message());
System exit(0);
}cat ch(Exception ex){
Systemerr.println("Caught an unexpected exception: " +
ex. get Message());
Systemexit(1);
}

7. Press Alt-Shift-F to generate the following import statements:

i mport cart. Cart Renot e;

i mport cart. Cart Renot eHone;

i mport exception. BookExcepti on;

import java.util.Enuneration;

i mport java.util.Vector;

i mport j avax. nam ng. Cont ext ;

i mport javax. nam ng. I nitial Context;

i mport javax.rni.Portabl eRenpt eOhj ect ;

THE HELLOSERVICE WEB SERVICE EXAMPLE 153

Opening the CartClient Project

If you open the source code of the CartClient application, you are prompted to
resolve library references and add the Cart EJB module and the j 2ee. j ar and
appserv-rt.jar filesto the project classpath.

1. Right-click the CartClient node in the Projects window and choose
Resolve Reference Problems. Select the“Cart” project coul d not be
f ound message and click Resolve. Inthefile chooser, sel ect either the com-
pleted Cart project in <INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cart/
or the project you created and click OK.

2. Select the“appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1 i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolvesthe location of j 2ee. j ar. Click Close.

Running the CartClient Application

Right-click the CartClient node and select Run Project from the contextual
menu. Lines similar to the following are displayed in the Output window of the
IDE:

run:
com sun. cor ba. ee. spi . | oggi ng. LogW apper Base doLog

I NFO. "10P00710299: (I NTERNAL) Successfully created I10OP

|istener on the specified host/port: all interfaces/<port>"

The Martian Chronicles

2001 A Space Odyssey

The Left Hand of Darkness

Caught a BookException Alice in Wnderland not in cart.

BUI LD SUCCESSFUL (total time: 3 seconds)

The HelloService Web Service Example

This example demonstrates a simple web service that generates a response based
on information received from the client. Hel | oSer vi ceBean is a stateless session
bean that implements a single method, sayHel | o. This method matches the say-
Hel I o method invoked by the clients. In this section, you will register the Hel-
loService web service with the server and then test the Hel | oSer vi ceBean by
running the HelloWebClient JAX-RPC client.

154

SESSION BEAN EXAMPLES

The source code for the HelloService example is located in the
<INSTALL>/ j 2eet ut ori al / exanpl es/ ej b/ hel | oservi ce/ directory.

Opening the HelloSer vice Example

The HelloService project contains the Hel | oSer vi ceBean class and the service
endpoint interface (SEI). The Hel | oSer vi ceBean class is located in the hel | o
package in the Source Packages node and contains the business method. The
Hel | oSer vi ceSEl interfaceisalso located in the hel | o package.

1. Choose File—»Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ hel | oservi ce/, Select the
Hel | oSer vi ce directory, and choose Open Project.

2. Expand the hel | o package under the Source Packages node and open the
Hel | oSer vi ceSEl interface in the Source Editor.

Web Service Endpoint Interface

Hel | oSer vi ceSEl is the bean’s web service endpoint interface. It provides the
client’sview of the web service, hiding the statel ess session bean from the client.
A web service endpoint interface must conform to the rules of a JAX-RPC ser-
vice definition interface. For a summary of these rules, see Generating and Cod-
ing the Service Endpoint Interface and Implementation Class (page 36). Here is
the source code for the Hel | oSer vi ce interface:

package hell o;
public interface Hell oServi ceSEl extends java.rm .Renote {

public String sayHello(java.lang. String nanme) throws
java. rm . Renot eExcepti on;

}

Sateless Session Bean Implementation Class

The Hel | oSer vi ceBean class implements the sayHel | o method defined by the
Hel | oServi ceSEl interface. The interface decouples the implementation class
from the type of client access. For example, if you added remote and home inter-
faces to Hel | oSer vi ceBean, the methods of the Hel | oSer vi ceBean class could

STATELESS SESSION BEAN | MPLEMENTATION CLASS

also be accessed by remote clients. No changes to the Hel | oSer vi ceBean class
would be necessary.

The source code for the Hel | oSer vi ceBean class follows:

package hel | o;
i mport javax.ejb.*;

public class Hell oServi ceBean i npl enents javax. ej b. Sessi onBean

{

private javax.ejb. Sessi onCont ext context;
public String sayHell o(java.lang. String nanme) {

return "Hello "+ name + " (from Hell oServi ceBean)";

public void ejbCreate() {}
public void ej bRenove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void set Sessi onCont ext (j avax. ej b. Sessi onCont ext
aContext) ({
cont ext = aCont ext;

}
}

To run the HelloService example, you need to build and deploy the application.
You also need to register the web service with the application server before you
can run the HelloWebClient application to test the HelloService example.

1. In the Projects window, right-click the HelloService module node and
choose Run Project.

2. Expand the Web Services node and right-click the HelloService web ser-
vice and choose Add to Registry. In the Enter WSDL Url dialog box,
ensure that the address is correct and corresponds to your server configu-
ration and click OK.

After you register the web service, the web serviceisvisiblein the Runtime win-
dow under the Web Services node of the server instance and the HelloService
application is visible under the EJB Modules under the Applications node. After
you have deployed the application and registered the web service, you can test
the web service by running the HellowWebClient application.

155

156

SESSION BEAN EXAMPLES

Running the HelloWebClient Application

When you run the HelloWebClient application, the HellowebClient application
is deployed to your server and the HelloWebServlet opens in your web browser.
This HelloWebClient example already contains the necessary reference to the
HelloService web service so you do not need to add it. For this example, it is
assumed that your localhost server isrunning on port 8080. If your server is run-
ning on adifferent port, you will need to edit the following linein the Hel | oSer -
vice. wsdl file to match your configuration. The Hel | oServi ce. wsdl file is
located in the directory <I NSTALL>/ j 2eet ut ori al 14/ exam
pl es/ ej b/ hel | oservi ce/ Hel | oVbd i ent/ web/ VEB- | NF/ wsdl / .

<soap: addr ess
I ocation="http://|ocal host: 8080/ webservi ce/ Hel | oServi ce"
xm ns: wsdl =" http://schemas. xnm soap. org/ wsdl /"/>

1. Choose File—»Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ hel | oservi ce/, select the
Hel | ovebd i ent directory, and choose Open Project.

2. In the Projects window, right-click the HelloWebClient project node and
choose Run Project. The IDE builds the project, registers the server
resources and opens the client in your web browser.

3. When the servlet page opensin your web browser, enter your name in the
input box and click Submit to test the web service.

The web page displays the text you input followed by “ (from Hel | oServi ce-
Bean)”

Other Enterprise Bean Features

The topics that follow apply to session beans and entity beans.

Accessing Environment Entries

Stored in an enterprise bean’s deployment descriptor, an environment entry is a
name-value pair that allows you to customize the bean’s business logic without
changing its source code. An enterprise bean that cal culates discounts, for exam-
ple, might have an environment entry named Di scount Per cent . Before deploy-
ing the bean’s application, you could run a devel opment tool to assign bi scount

ACCESSING ENVIRONMENT ENTRIES 157

Per cent avaue of 0.05 in the bean’s deployment descriptor. When you run the
application, the bean fetches the 0.05 value from its environment.

In the following code example, the appl yDi scount method uses environment
entries to calculate a discount based on the purchase amount. First, the method
locates the environment naming context by invoking |ookup using the
j ava: conp/ env parameter. Then it calls | ookup on the environment to get the
values for the Di scount Level and Di scount Percent names. For example, if
you assign a value of 0.05 to the Di scount Percent entry, the code will assign
0.05 to the di scount Per cent variable. The appl yDi scount method, which fol-
lows, is in the Checker Bean class. The source code for this example is in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ checker.

publ i ¢ doubl e appl yDi scount (doubl e anpbunt) {

try {

doubl e di scount;

Context initial = new Initial Context();
Cont ext environnent =
(Context)initial.lookup("java:conp/env");

Doubl e di scount Level =
(Doubl e) envi ronnent . | ookup("Di scount Level");
Doubl e di scount Percent =
(Doubl e) envi ronnent . | ookup(" Di scount Percent");

if (amount >= di scount Level . doubl eVal ue()) {
di scount = di scount Percent. doubl eVal ue() / 100;
}
el se {
di scount = 0.00;
}

return anmount * (1.00 - discount);
} catch (Nam ngException ex) {

throw new EJBExcepti on("Nam ngException: "+
ex. get Message());

158

SESSION BEAN EXAMPLES

Comparing Enterprise Beans

A client can determine whether two stateful session beans areidentical by invok-
ing thei sl dent i cal method:

bookCart = hone.create("Bill Shakespeare");
vi deoCart = hone.create("Lefty Lee");

if (bookCart.isldentical (bookCart)) {

/Il true ... }
if (bookCart.isldentical (videoCart)) {
/1 false ... }

Because statel ess session beans have the same object identity, thei sl denti cal
method always returnst r ue when used to compare them.

To determine whether two entity beans are identical, the client can invoke the
i sldenti cal method, or it can fetch and compare the beans's primary keys:

String keyl
String key2

(String)accta.getPrimryKey();
(String)accth. getPrimryKey();

if (keyl.conpareTo(key2) == 0)
Systemout. println("equal");

Passing an Enterprise Bean’s Object
Reference

Suppose that your enterprise bean needs to pass a reference to itself to another
bean. You might want to pass the reference, for example, so that the second bean
can call the first bean’s methods. You can’t pass the t hi s reference because it
points to the bean’'s instance, which is running in the EJB container. Only the
container can directly invoke methods on the bean’s instance. Clients access the
instance indirectly by invoking methods on the object whose type is the bean’s
remote interface. It is the reference to this object (the bean’s remote reference)
that the first bean would pass to the second bean.

A session bean obtains its remote reference by calling the get EJBbj ect method
of the Sessi onCont ext interface. An entity bean would call the get EJIBj ect
method of the EntityCont ext interface. These interfaces provide beans with
access to the instance contexts maintained by the EJB container. Typically, the

USING THE TIMER SERVICE 159

bean saves the context in the set Sessi onCont ext method. The following code
fragment shows how a session bean might use these methods.

public class WagonBean i npl enents Sessi onBean {
Sessi onCont ext cont ext;

public void set Sessi onCont ext (Sessi onCont ext aContext) {
cont ext = aContext;

}
public void passltOn(Basket basket) {

basket . copylt ens(cont ext. get EJBChj ect());

Using the Timer Service

Applications that model business work flows often rely on timed notifications.
The timer service of the enterprise bean container enables you to schedule timed
notifications for al types of enterprise beans except for stateful session beans.
You can schedule a timed notification to occur at a specific time, after aduration
of time, or at timed intervals. For example, you could set timers to go off at
10:30 AM on May 23, in 30 days, or every 12 hours.

When a timer expires (goes off), the container calls the ej bTi mreout method of
the bean’s implementation class. The ej bTi nreout method contains the business
logic that handles the timed event. Because ej bTi meout is defined by the
j avax. ej b. Ti medvj ect interface, the bean class must implement Ti medo-
ject.

There are four interfacesin thej avax. ej b package that are related to timers:
e Ti medbj ect
e Tinmer
e TinmerHandl e

* TinerService

Creating Timers

To create atimer, the bean invokes one of thecr eat eTi mer methods of the Ti m
er Servi ce interface. (For details on the method signatures, see the Ti mer Ser -

160

SESSION BEAN EXAMPLES

vice APl documentation.) When the bean invokes creat eTi ner, the timer
service begins to count down the timer duration.

The bean described in the The TimerSessionBean Example (page 162) creates a
timer asfollows:

Ti mer Service timerService = context.getTinerService();
Timer tinmer = tinmerService.createTiner(interval Duration,
"created timer");

In the Ti mer Sessi onBean example, createTi ner is invoked in a business
method, which is called by aclient. An entity bean can also create atimer in a
business method. If you want to create a timer for each instance of an entity
bean, you can codethecr eat eTi mer call inthe bean’sej bCr eat e method.

Timers are persistent. If the server is shut down (or even crashes), timers are
saved and will become active again when the server is restarted. If a timer
expires while the server is down, the container will call ej bTi meout when the
server is restarted.

A timer for an entity bean is associated with the bean’s identity—that is, with a
particular instance of the bean. If an entity bean sets atimer in ej bCreat e, for
example, each bean instance will have its own timer. In contrast, stateless ses-
sion and message-driven beans do not have unique timers for each instance.

The Dat e and | ong parameters of the cr eat eTi mer methods represent time with
the resolution of milliseconds. However, because the timer service is not
intended for real-time applications, a callback to ej bTi meout might not occur
with millisecond precision. The timer service is for business applications, which
typically measure time in hours, days, or longer durations.

Canceling and Saving Timers

Timers can be canceled by the following events.
* When a single-event timer expires, the EJB container calls ej bTi meout
and then cancels the timer.

* When an entity bean instance is removed, the container cancels the timers
associated with the instance.

* Whenthebean invokesthecancel method of theTi ner interface, the con-
tainer cancels the timer.

GETTING TIMER I NFORMATION

If a method is invoked on a canceled timer, the container throws the
j avax. ej b. NoSuchQbj ect Local Excepti on.

To save a Ti ner object for future reference, invoke its get Handl e method and
store the Ti ner Handl e object in a database. (A Ti mer Handl e object is seriaiz-
able.) To reinstantiate the Ti mer object, retrieve the handle from the database
and invoke get Ti mer on the handle. A Ti mer Handl e object cannot be passed as
an argument of a method defined in a remote or web service interface. In other
words, remote clients and web service clients cannot access a bean’s Ti mer Han-
dl e object. Local clients, however, do not have this restriction.

Getting Timer Information

In addition to defining the cancel and get Handl e methods, the Ti ner interface
defines methods for obtaining information about timers:

public | ong getTi meRenai ni ng();
public java.util.Date getNextTi meout();
public java.io.Serializable getlnfo();

The get I nf o method returns the object that was the last parameter of the cre-
at eTi mer invocation. For example, in the cr eat eTi mer code snippet of the pre-
ceding section, this information parameter is a String object with the value
created tinmer.

To retrieve all of a bean's active timers, call the get Ti ner s method of the Ti m
er Servi ce interface. The get Ti mers method returns a collection of Ti mer
objects.

Transactionsand Timers

An enterprise bean usually creates atimer within atransaction. If this transaction
isrolled back, the timer creation is also rolled back. Similarly, if abean cancelsa
timer within a transaction that gets rolled back, the timer cancellation is rolled
back. In this case, the timer’'s duration is reset as if the cancellation had never
occurred.

In beans that use container-managed transactions, the ej bTi neout method usu-
aly has the Requi r esNew transaction attribute to preserve transaction integrity.
With this attribute, the EJB container begins the new transaction before calling

161

162

SESSION BEAN EXAMPLES

ej bTi meout . If the transaction is rolled back, the container will try to call ej b-
Ti meout at least one more time.

The Timer SessionBean Example

The source code for this example is in the <INSTALL>/ j 2eet ut ori al 14/ exam
pl es/ ej b/ ti mer sessi on/ directory.

Ti mer Sessi on iS a stateless session bean that shows how to set a timer. The
implementation class for Ti mer Sessi onBean is caled Ti ner Sessi onBean. In
the source code listing of Ti ner Sessi onBean that follows, note the nyCre-
ateTi mer and ej bTi meout methods. Because it's a business method, nyCr e-
at eTi mer is defined in the bean’s business interface
(Ti mer Sessi onRenot eBusi ness). The remote interface (Ti mer Sessi onRenot e)
definesthe interfaces that can be called by the remote client. In this example, the
client invokes nmyCr eat eTi mer with an interval duration of 30,000 milliseconds.
The nyCreat eTi mer method fetches a Ti ner Servi ce object from the bean’'s
Sessi onCont ext . Then it creates a new timer by invoking the creat eTi ner
method of Ti ner Servi ce. Now that the timer is set, the EJB container will
invoke the ej bTi mer method of Ti mer Sessi onBean when the timer expires—in
about 30 seconds. Here's the source code for the Ti ner Sessi onBean class:

package timer;
inport javax.ejb.*;

public class TimerSessi onBean i npl enents Sessi onBean,
Ti mer Sessi onRenot eBusi ness, Ti nedCbj ect {
private Sessi onContext context;

public void nmyCreateTimer(long interval Duration) {

Systemout.println
(" Ti mer Sessi onBean: start createTimer ");
Ti mer Service tinmerService =
cont ext. get Ti ner Servi ce();
Tinmer timer =
timer Service. createTi mer (i nterval Durati on,
"created timer");

public void ejbTineout (Tiner timer) {
System out . printl n("Ti mer Sessi onBean: ej bTi neout ");

}

THE TIMERSESSIONBEAN EXAMPLE 163

public void set Sessi onCont ext (Sessi onCont ext aContext) ({
context = aContext;

}

public void ejbCreate() {
System out. println("Ti mer Sessi onBean: ejbCreate");

}

publ i c Ti mer Sessi onBean() {}
public void ej bRenove() {}
public void ejbActivate() {}
public void ejbPassivate() {}

Running the Timer SessionBean Example

To run the TimerSessionBean example, you first need to open the TimerClient
and the TimerEJB projectsin the IDE and build the projects.

1. Choose File—»Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ ti mer sessi on/, select the
Ti mer EJB directory, and choose Open Project.

2. Choose File—>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ ti mer sessi on/, select the
Ti mer d i ent directory, and choose Open Project. Right-click the Timer-
Client node in the Projects window and choose Resolve Resource Refer-
ences and locate the j 2ee. jar and appserv-rt.jar files to add to the
project classpath. The JAR files can be found in the lib folder of the local
installation of the SIS Application Server. You will aso need to add the
TimerEJB module to the project classpath.

3. Right-click the TimerEJB node in the Projects window and choose Run
Project. The TimerEJB application is deployed to the server.

4. Right-click the TimerClient node in the Projects window and choose Run
Project.

Lines similar to the following will appear in the Output window:

4.5.2005 15:35:43 com sun. corba. ee. spi .| oggi ng. LogW apper -

Base dolLog
INFO "10P00710299: (I NTERNAL) Successfully created |10P
i stener on the specified host/port: all interfaces/2154"

Creating a tinmer with an interval duration of 30000 ms.

164

SESSION BEAN EXAMPLES

BU LD SUCCESSFUL (total tine: 2 seconds)

The output from the timer appears in the server log file for the localhost in the
Output window.

After about 30 seconds you will see lines similar to the following:

[#] 2005- 05- 04T15: 38: 06. 320+0200| | NFQ sun- appserver -
pe8.1_01|j avax. enterprise.system stream out| _Threadl D=19; |

Ti mer Sessi onBean: start createTinmer |#]

[#] 2005- 05- 04T15: 38: 13. 445+0200| | NFQ sun- appser ver -
pe8.1_01]|javax.enterprise.system stream out|_Threadl D=19; |

Ti mer Sessi onBean: ej bTi meout | #]

Handling Exceptions

The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an applica-
tion. Examples of these problems include the following: a database connection
cannot be obtained, an SQL insert fails because the database is full, or al ookup
method cannot find the desired object. If your enterprise bean encounters a sys-
tem-level problem, it should throw aj avax. ej b. EJBExcept i on. The container
will wrap the EJBExcept i on in a Renot eExcept i on, which it passes back to the
client. Because the EJBExcept i on is a subclass of the Runt i neExcept i on, you
do not have to specify it inthet hr ows clause of the method declaration. If asys
tem exception is thrown, the EJB container might destroy the bean instance.
Therefore, a system exception cannot be handled by the bean’s client program; it
reguires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise
bean. There are two types of application exceptions: customized and predefined.
A customized exception is one that you’ ve coded yourself, such asthel nsuf fi -
cent Bal anceExcept i on thrown by the debit business method of the sav-
i ngsAccount Bean example. The javax.ejb package includes severa
predefined exceptions that are designed to handle common problems. For exam-
ple, an ej bCreate method should throw a Creat eException to indicate an
invalid input parameter. When an enterprise bean throws an application excep-

HANDLING EXCEPTIONS 165

tion, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back
the transaction. However, if an application exception is thrown within a transac-
tion, the container does not roll back the transaction.

Table 6-1 summarizes the exceptions of the j avax. ej b package. All of these
exceptions are application exceptions, except for the NoSuchEnt i t yExcepti on
and the EJBExcept i on, which are system exceptions.

Table6-1 Exceptions

Method Name Exception It Throws Reason for Throwing

ej bCreate Or eat eExcept i on Aninput parameter is

invalid.
ej bFi ndByPri ma-
. . The database row for the
ryKey oj ect Not FoundExcept i on requested entity been

(and other finder methods | (subclass of Fi nder Except i on)

that return a single object) cannot be found.

The entity bean’s row

ej bRenove RermoveExcept i on cannot be deleted from
the database.
The database row to be
ej bLoad NoSuchEnt it yExcepti on loaded into the entity
bean cannot be found.
. . . The database row to be
ej bStore NoSuchEnt it yExcepti on updated cannot be found.
(al methods) EJBExcepti on A system problem has

been encountered.

166 SESSION BEAN EXAMPLES

v

Bean-M anaged
Per sistence Examples

DATA is at the heart of most business applications. In J2EE applications,
entity beans represent the business objects that are stored in a database. For
entity beans with bean-managed persistence, you must write the code for the
database access calls. Although writing this code is an additional responsibility,
you will have more control over how the entity bean accesses a database.

This chapter discusses the coding techniques for entity beans with bean-man-
aged persistence. For conceptual information on entity beans, please see What Is
an Entity Bean? (page 111).

The SavingsAccountBean Example

The entity bean illustrated in this section represents a simple bank account. The
state of the savi ngsAccount Bean enterprise bean is stored in the savi ngsac-

167

168

BEAN-MANAGED PERSISTENCE EXAMPLES

count table of arelational database. The savi ngsaccount tableis created by the
following SQL statement:

CREATE TABLE savi ngsaccount
(i d VARCHAR(3)
CONSTRAI NT pk_savi ngsaccount PRI MARY KEY,
firstnane VARCHAR(24),
| ast nane VARCHAR(24),
bal ance NUMERI C(10, 2));

The savi ngsAccount Bean example requires the following code:

 Entity bean class (Savi ngsAccount Bean)
* Home interface (Savi ngsAccount Local Hone)
» Remote interface (Savi ngsAccount Local)

In addition to these standard files, the IDE also creates a business interface
(Pl ayer Local Busi ness) in which it registers business methods. This example
also uses the following classes:

» A utility classnamed | nsuf fi ci ent Bal anceExcepti on
* A client class called Savi ngsAccount d i ent

The source code for this example isin this directory:

<INSTALL>/j 2eet ut ori al 14/ ej b/ savi ngsaccount/

Creating the SavingsAccount Project

In the IDE, we have to create a project for the EJB module. We will create a
stand-alone EJB module project.

Creating the SavingsAccount Project

1. Choose File—>New Project (Ctrl-Shift-N).
2. From the Enterprise template category, select EJB Module and click Next.

3. Type savi ngsAccount as the Project Name, specify a location for the
project, and click Finish.

ENTITY BEAN CLASS

Creating the SavingsAccount Enterprise Bean

1. In the Projects window, right-click the SavingsAccount project node and
choose New—Entity Bean.

2. In the EJB Name field, type Savi ngsAccount . In the Package field, type
bank. Set the bean’s persistence to Bean and set the bean to only contain
remote interfaces. Then click Finish.

Entity Bean Class

The sample entity bean class, Savi ngsAccount Bean, is opened in the Source
Editor when you create the entity bean. Most of the EJB infrastructure mehtods
are hidden in a code fold. Click the + sign at the left of the code fold to inspect
these methods.

As you look through the bean class, note that it meets the requirements of any
entity bean that uses bean-managed persistence. First, it implements the follow-
ing:

e EntityBean interface

* Zero or more ej bCr eat e and ej bPost Cr eat e methods

* Finder methods

» Business methods

* Home methods
In addition, an entity bean class with bean-managed persistence has these
requirements:

* Theclassisdefined aspubl i c.

* The class cannot be defined asabstract or final .

* It contains an empty constructor.

* It doesnot implement thefi nal i ze method.

The EntityBean Interface

TheEnti t yBean interface extendsthe Ent er pri seBean interface, which extends
the Seri ali zabl e interface. The EntityBean interface declares a number of
methods, such asej bAct i vat e and ej bLoad, which you must implement in your
entity bean class. These methods are discussed in later sections.

169

http://java.sun.com/j2ee/tutorial/api/javax/ejb/EntityBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

170 BEAN-MANAGED PERSISTENCE EXAMPLES

The Database L ookup

Before you can access the database, you must connect to it. When you generate
database lookup code in the IDE, a data source and connection pool area auto-
matically added to the project. These resources are configred on the server when
you deploy the project.

1. In the Source Editor, right-click anywhere in the body of the Savi ngsAc-
count Bean class and choose Enterprise Resources—Use Database.

2. Change the INDI Nameto poi nt base, select j dbc: poi nt base: / /| ocal -
host : 9092/ sun- appser v- sanpl es in the Connection combo box, and
click OK.

3. If prompted for apassword, type pbpubl i ¢ inthe Password field and click
OK.

The IDE inserts the following code in the Savi ngsAccount Bean class:

private DataSource get Poi ntbase() throws Nam ngException {
Context ¢ = new Initial Context();
return (DataSource)

c.l ookup("java: conp/ env/j dbc/ poi nt base") ;

}

Now use the Dat aSour ce object store a connection to the database in a Connec-
ti on object.

1. Inthe Source Editor, select the Savi ngsAccount Bean classand add thefol-
lowing field to your list of field declarations:
private Connection con;

2. Add amethod that makes a connection to the database:

private void makeConnection() {
try {
con = get Poi nt base(). get Connection();
} catch (Exception ex) {
t hrow new EJBException("Unabl e to connect to database.
'+
ex. get Message());
}
}

3. Add amethod that rel eases the database connection:

private void rel easeConnection() ({

try {
con. close();

4.

ENTITY BEAN CLASS

} catch (SQ.Exception ex) {
throw new EJBException("rel easeConnection: " + ex.get-
Message()) ;
}

}
Press Alt-Shift-F to generate the following import statements:

i mport java.sql. Connecti on;
i mport java.sql.SQLException;

Database Access M ethods

Now that you have a connection to the database, you need to code the methods
that implement the cals to the database.

1

Add the following field declarations to Savi ngsAccount Bean:
private String id;

private String firstNanme;

private String | ast Nane;

private Bi gbeci mal bal ance;

. Generate get and set methods for each of the fields. In the Source Editor,

right-click anywhere in Savi ngsAccount Bean and choose Refactor—En-
capulate Fields. In the dialog box, select the checkbox for the four fields
and click Next. Then click Do Refactoring to generate the methods.

. Add each of the get methods to the remote interface so that they are avail-

able to the clients. In the Source Editor, right-click each method’s name
(for example, get Fi r st Nane) and choose EJB Methods—Add to Remote
Interface.

. Add the database methods to the entity bean class. You can copy the busi-

ness methods from the SavingsAccountBean class in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ savi ngsac-

count / Savi ngsAccount/ src/j ava directory. The business methods start
with the// Database Methods comment on line 251 and end with the
sel ect | nRange method on line 535.

. Press Alt-Shift-F to generate the following import statements:

i mport java. mat h. Bi gDeci nal ;

i mport java.sql.PreparedStatenent;
i mport java.sql.Result Set;

i mport java.util.Arraylist;

i mport java.util.Collection;

171

172

BEAN-MANAGED PERSISTENCE EXAMPLES

The g bCreate Method

When the client invokes acr eat e method, the EJB container invokes the corre-
sponding ej bCr eat e method. Typically, an ej bCr eat e method in an entity bean
performs the following tasks:

* |nsertsthe entity state into the database
* Initializes the instance variables
* Returnsthe primary key

In the IDE, you can generate ej bCr eat e methods into the bean class and the
home interface at the same time.

1. In the Source Editor, right-click anywhere in the body of the Savi ngsAc-
count Bean class and choose EJB Methods—Add Create Method.

2. Use the Add button on the Parameterstab of the dialog box to add the fol-
lowing parameters:
e String id
e String firstNanme
e String |astNane

* BigDeci nal bal ance
3. Leave the default information in the Exceptions tab and click OK.

The IDE inserts an empty ej bCreate method and an empty ej bPost Creat e
method into the Savi ngsAccount Bean class.

The ej bCr eat e method of Savi ngsAccount Bean inserts the entity state into the
database by invoking the private i nsert Row method, which issues the SQL
I NSERT statement. Change the contents of the ej bCr eat e method to the follow-

ing:

public String ejbCreate(String id, String firstNane,
String | ast Nane, Bi gDeci nal bal ance)
throws CreateException {

if (balance.signum() == -1) {
t hrow new Creat eException
("A negative initial balance is not allowed.");

}

try {
insertRowmid, firstNane, |astNane, bal ance);

} catch (Exception ex) {
t hrow new EJBException("ej bCreate: " +

ENTITY BEAN CLASS

ex. get Message());

}

this.id =id;
this.firstNane = firstNaneg;
this.|last Nanme = | ast Nane;

t hi s. bal ance = bal ance;

return id;

}

Although the Savi ngsAccount Bean class has only one ej bCr eat e method, An
enterprise bean can contain multiple ej bCr eat e methods. For an example, see
the Car t Bean. j ava source code in this directory:

<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cart/

When you write an ej bCr eat e method for an entity bean, be sure to follow these
rules:

* The access control modifier must be publ i c.

* The return type must be the primary key.

» The arguments must be legal typesfor the JavaRMI API.
» The method modifier cannot befinal orstatic.

The throws clause can include the j avax. ej b. Cr eat eExcept i on and excep-
tions that are specific to your application. An ej bCr eat e method usually throws
a Creat eExcept i on if an input parameter is invalid. If an ej bCr eat e method
cannot create an entity because another entity with the same primary key already
exists, it should throw a j avax. ej b. Dupl i cat eKeyExcept i on (a subclass of
Creat eException). If a client receives a CreateException Or a Dupli-
cat eKeyExcept i on, it should assume that the entity was not created.

The state of an entity bean can be directly inserted into the database by an appli-
cation that is unknown to the Sun Java System Application Server Platform Edi-
tion 8. For example, an SQL script might insert a row into the savi ngsaccount
table. Although the entity bean for this row was not created by an ej bCreat e
method, the bean can be located by a client program.

173

174

BEAN-MANAGED PERSISTENCE EXAMPLES

The g bPostCreate Method

For each ej bCr eat e method, your entity bean class must contain an ej bPost -
Create method. The IDE automatically creates an ej bPost Creat e method
whenever you generate a create method.

The EJB container invokes ej bPost Cr eat e immediately after it calls ej bCr e-
at e. Unlike the ej bCr eat e method, the ej bPost Cr eat e method can invoke the
get Pri mar yKey and get EJBObj ect methods of the EntityCont ext interface.
For more information on the get EJBObj ect method, see the section Passing an
Enterprise Bean's Object Reference (page 160). Often, your ej bPost Cr eat e
methods will be empty. Leave the ej bPost Cr eat e method empty in the Sav-
i ngsAccount Bean class.

The signature of an ej bPost Cr eat e method must meet the following require-
ments:

» The number and types of arguments must match a corresponding ej bCr e-
at e method.

» The access control modifier must be publ i c.
» The method modifier cannot befinal orstatic.
» Thereturn type must bevoi d.

The t hrows clause can include the j avax. ej b. Cr eat eExcept i on and excep-
tions that are specific to your application.

The g bRemove Method

A client deletes an entity bean by invoking the r enove method. This invocation
causes the EJB container to call the ej bRenove method, which deletes the entity
state from the database. In the Savi ngsAccount Bean class, expand the code fold
that contains the EJB infrastructure methods and change the ej bRenove method
to the following:

public void ej bRenove() {
try {
del et eRow(i d) ;
} catch (Exception ex) {
t hrow new EJBException("ej bRenmove: " +ex. get Message());
}
}

ENTITY BEAN CLASS

The ej bRenmove method invokes a private method named del et eRow;, which
issues an SQL DELETE statement.

If the ej bRenmove method encounters a system problem, it should throw the
j avax. ej b. EJBExcept i on. If it encounters an application error, it should throw
aj avax. ej b. RenoveExcepti on.

An entity bean can also be removed directly by a database deletion. For example,
if an SQL script deletes a row that contains an entity bean state, then that entity
bean is removed.

The gbLoad and ggbSore Methods

If the EJB container needs to synchronize the instance variables of an entity bean
with the corresponding values stored in a database, it invokes the ej bLoad and
ej bSt or e methods. The ej bLoad method refreshes the instance variables from
the database, and the ej bst or e method writes the variables to the database. The
client cannot call ej bLoad and ej bSt or e.

If a business method is associated with a transaction, the container invokes ej b-
Load before the business method executes. Immediately after the business
method executes, the container calls ej bSt or e. Because the container invokes
ej bLoad and ej bSt or e, you do not have to refresh and store the instance vari-
ables in your business methods. The Savi ngsAccount Bean class relies on the
container to synchronize the instance variables with the database. Therefore, the
business methods of Savi ngsAccount Bean should be associated with transac-
tions.

If the ej bLoad and ej bSt or e methods cannot locate an entity in the underlying
database, they should throw the j avax. ej b. NoSuchEntityException. This
exception is a subclass of EJBExcept i on. Because EJBExcept i on IS a subclass
of Runt i meExcept i on, you do not have to includeit in thet hr ows clause. When
NoSuchEnt i t yExcept i on is thrown, the EJB container wraps it in a Renot eEx-
cept i on before returning it to the client.

In the Source Editor, change the ej bLoad and ej bSt or e methods to the follow-
ing:

public void ejbLoad() {

try {
| oadRow() ;
} catch (Exception ex) {
throw new EJBException("ejbLoad: " + ex.getMessage());

}

175

176

BEAN-MANAGED PERSISTENCE EXAMPLES

}

public void ejbStore() {

try {
storeRow() ;

} catch (Exception ex) {
t hrow new EJBException("ejbStore: " + ex.getMessage());

}
}

In the Savi ngsAccount Bean class, ej bLoad invokes the | oadRow method, which
issues an SQL SELECT statement and assigns the retrieved data to the instance
variables. The ej bst ore method calls the st or eRow method, which stores the
instance variables in the database using an SQL UPDATE statement.

The Finder Methods

The finder methods allow clients to locate entity beans. The Savi ngsAccount -
Cl i ent program locates entity beans using three finder methods:

Savi ngsAccount Renot e j ones = hone. fi ndByPri maryKey("836");
Col l ection ¢ = hone.findByLast Nane("Snmith");

Col l ection ¢ = hone. findl nRange(new Bi gDeci mal ("20. 00"),
new Bi gDeci mal ("99.00"));

For every finder method available to a client, the entity bean class must imple-
ment a corresponding method that begins with the prefix ej bFi nd. The Sav-
i ngsAccount Bean class, for example, implements two optional finder methods:
ej bFi ndByLast Nare and ej bFi ndl nRange.

1. In the Source Editor, right-click anywhere in the body of the Savi ngsAc-
count Bean class and choose EJB Methods—Add Finder Method.

2. Inthe Namefield, typef i ndByLast Nane. Leave the Return Cardinality set
to Many and the Remote interface selected. Use the Parameters tab to add
astring |astName parameter. Then click OK to generate the finder
method in both the bean class and the home interface.

3. Edit the gbFindByL astName method as follows:

public Coll ection ejbFi ndByLast Name(String | astNane)
throws Finder Exception {
Col l ection result;

try {

ENTITY BEAN CLASS

result = sel ect ByLast Nane(| ast Nane) ;
} catch (Exception ex) {
t hr ow new EJBException("ej bFi ndByLast Nanme " +
ex. get Message());

}

return result;

}
4. Repeat steps 1-3 to create the following ej bFi ndl nRange method:

public Collection ejbFindl nRange(Bi gDeci mal | ow,
Bi gDeci mal hi gh) throws FinderException {
Col | ection result;

try {
result = sel ectlnRange(l ow, high);
} catch (Exception ex) {
t hrow new EJBException("ej bFi ndl nRange: "
+ ex. get Message());
}

return result;

}

The finder methods that are specific to your application, such as ej bFi ndBy-
Last Name and ej bFi ndl nRange, are optional, but the ej bFi ndByPri mar yKey
method is required. As its name implies, the ej bFi ndByPri mar yKey method
accepts as an argument the primary key, which it uses to locate an entity bean. In
the Savi ngsAccount Bean class, the primary key is the i d variable. Edit the
ej bFi ndByPri mar yKey method as follows:

public String ejbFi ndByPrimaryKey(String aKey)
t hrows Fi nder Exception {

bool ean result;

try {
result = sel ect ByPri maryKey(aKey);
} catch (Exception ex) {
t hrow new EJBException("ej bFi ndByPri maryKey: " +
ex. get Message());
}

if (result) {
return akKey;

}

el se {
t hr ow new bj ect Not FoundExcepti on
("Row for id " + aKey + " not found.");

177

178

BEAN-MANAGED PERSISTENCE EXAMPLES

The ej bFi ndByPri mar yKey method may look strange to you, because it uses a
primary key for both the method argument and the return value. However,
remember that the client does not call ej bFi ndByPri mar yKey directly. It is the
EJB container that cals the ej bFi ndByPri mar ykey method. The client invokes
thefi ndByPri mar ykey method, which is defined in the home interface.

The following list summarizes the rules for the finder methods that you imple-
ment in an entity bean class with bean-managed persistence:

» Theej bFi ndByPri mar ykey method must be implemented.
* A finder method name must start with the prefix ej bFi nd.
» The access control modifier must be publ i c.

» The method modifier cannot befi nal orstati c.

» The arguments and return type must be legal types for the Java RMI API.
(This requirement applies only to methods defined in aremote—and not a
local—home interface.)

» Thereturn type must be the primary key or a collection of primary keys.

The t hrows clause can include the j avax. ej b. Fi nder Excepti on and excep-
tions that are specific to your application. If afinder method returns a single pri-
mary key and the requested entity does not exist, the method should throw the
j avax. ej b. Obj ect Not FoundExcept i on (a subclass of Fi nder Exception). If a
finder method returns a collection of primary keys and it does not find any
objects, it should return an empty collection.

The Business M ethods

The business methods contain the business logic that you want to encapsulate
within the entity bean. Usually, the business methods do not access the database,
and this allows you to separate the business logic from the database access code.

First you need to create a specia Java exception class that your business meth-
ods will use.

1. In the Projects window, right-click the SavingsAccount project node and
choose New—File/Folder.

2. From the Java Classes category, select the Java Exception template and
click Next.

3. Name the class | nsuf fi ci ent Bal anceExcepti on, place it in the bank
package, and choose Finish. The IDE creates the class and opensit in the

ENTITY BEAN CLASS 179

Source Editor. You could customize the way the exception is handled. For
our purposes, we will just use the basic code provided by the template.

Now you can add the business methods.

1. In the Source Editor, right-click anywhere in the body of the Savi ngsAc-
count Bean class and choose EJB Methods—Add Business Method.

2. Inthe Namefield, typedebi t . Leavevoi d in the Return Type combo box.
In the Parameters tab, use the Add button to add a Bi gDeci nmal anount
parameter. In the Exceptions tab, use the Add button to add an
I nsuf fici ent Bal anceExcepti on exception. Then click OK to generate
the method.

3. Edit the body of the the debit method as follows:

public void debit(Bi gDeci mal anmpunt)
throws | nsufficientBal anceException {
if (bal ance. conpareTo(anmount) == -1) {
t hrow new | nsuffi ci ent Bal anceException();

}

bal ance = bal ance. subtract (anount);
}
4. Repeat steps 1-3 to create the following business method. Make sure you
set the return types, exceptions, and parameters correctly:

public void credit(BigDecimal anmount) {
bal ance = bal ance. add(anount) ;

}
The savi ngsAccount C i ent program invokes the business methods as follows:

Bi gDeci mal zer oAmount = new Bi gDeci mal ("0.00");
Savi ngsAccount duke = hone.create("123", "Duke", "Earl",
zer oAnount) ;

duke. credit (new Bi gDeci mal ("88.50"));
duke. debi t (new Bi gDeci mal ("20.25"));
Bi gDeci mal bal ance = duke. get Bal ance();

The requirements for the signature of a business method are the same for session
beans and entity beans:

» The method name must not conflict with a method name defined by the
EJB architecture. For example, you cannot call abusinessmethod ej bCr e-
ate Or ej bActi vate.

* The access control modifier must be publ i c.
* The method modifier cannot befi nal orstatic.

180

BEAN-MANAGED PERSISTENCE EXAMPLES

» The arguments and return types must be legal typesfor the JavaRMI API.
This requirement applies only to methods defined in a remote—and not a
local—home interface.

Thet hr ows clause can include the exceptions that you define for your applica-
tion. The debi t method, for example, throwsthe | nsuf fi ci ent Bal anceExcep-
tion. To indicate a system-level problem, a business method should throw the
j avax. ej b. EJBExcept i on.

TheHome Methods

A home method contains the business logic that applies to al entity beans of a
particular class. In contrast, the logic in a business method applies to a single
entity bean, an instance with a unique identity. During a home method invoca
tion, the instance has neither a unique identity nor a state that represents a busi-
ness object. Consequently, a home method must not access the bean's
persistence state (instance variables). (For container-managed persistence, a
home method aso must not access relationships.)

Typically, a home method locates a collection of bean instances and invokes
business methods as it iterates through the collection. This approach is taken by
the ej bHomeChar geFor LowBal ance method of the Savi ngsAccount Bean class.
The ej bHoneChar geFor LowBal ance method applies a service charge to al sav-
ings accounts that have balances less than a specified amount. The method
locates these accounts by invoking the fi ndl nRange method. As it iterates
through the collection of Savi ngsAccount instances, the ej bHomeChar geFor -
LowBal ance method checks the balance and invokesthe debi t business method.

1. In the Source Editor, right-click anywhere in the body of the Savi ngsAc-
count Bean class and choose EJB Methods—Add Home Method.

2. Inthe Namefield, type char geFor LowBal ance. Leave voi d in the Return
Type combo box. In the Parameters tab, use the Add button to add the fol -
lowing parameters:

e BigDeci mal m ni munBal ance
« BigDeci mal charge

3.In the Exceptions tab, use the Add button to add an
I nsuf fici ent Bal anceExcept i on exception. Then click OK to generate
the method.

4. Edit the body of the the method as follows:

public void ej bHoneChar geFor LowBal ance(
Bi gDeci mal m ni nunBal ance, Bi gDeci mal charge)

ENTITY BEAN CLASS

throws | nsufficientBal anceException {

try {
Savi ngsAccount Renpot eHone hone =

(Savi ngsAccount Renot eHonre) cont ext . get EJBHone() ;
Col l ection ¢ = hone. fi ndl nRange(new Bi gDeci mal (" 0.00"),
nmi ni mumBal ance. subt ract (new Bi gDeci mal ("0.01")));

Iterator i = c.iterator();

while (i.hasNext()) {
Savi ngsAccount Renpt e account =
(Savi ngsAccount Renot e) i . next () ;
i f (account. getBal ance().conpareTo(charge) == 1) {
account . debi t (charge);

} catch (Exception ex) {
t hrow new EJBExcepti on("ej bHomeChar geFor LowBal ance:
+ ex. get Message());

}

The home interface defines a corresponding method named char geFor LowBal -
ance (see Home Method Definitions, page 183). Because the interface provides
the client view, the Savi ngsAccount d i ent program invokes the home method
asfollows:

Savi ngsAccount Renot eHore hone;

hone. char geFor LowBal ance(new Bi gDeci nal (" 10. 00"),
new Bi gDeci mal ("1.00"));

In the entity bean class, the implementation of a home method must adhere to
these rules:

* A home method name must start with the prefix ej bHone.

* The access control modifier must be publ i c.

* The method modifier cannot be st ati c.

Thet hr ows clause can include exceptions that are specific to your application; it
must not throw thej ava. r nmi . Renot eExcept i on.

182 BEAN-MANAGED PERSISTENCE EXAMPLES

Home I nterface

The home interface defines the cr eat e, finder, and home methods. The Sav-
i ngsAccount Renot eHone interface follows:

import java.util.Collection;

i mport java. mat h. Bi gDeci nal ;

i mport java.rm .RenoteException;
i mport javax.ejb.*;

public interface Savi ngsAccount Renot eHone ext ends EJBHome {

Savi ngsAccount Renote create(String id, String firstNang,
String | ast Nane, Bi gDeci nal bal ance)
t hrows Renot eException, CreateException;

Savi ngsAccount Renote findByPrimaryKey(String key)
throws Fi nder Exception, RenoteException;

Col I ection findByLast Name(String | ast Nane)
t hrows Fi nder Excepti on, RenoteExcepti on;

Col I ection findl nRange(Bi gDeci mal | ow, Bi gDecinmal high)
throws Fi nder Exception, RenoteException;

voi d char geFor LowBal ance(Bi gDeci mal mi ni nunBal ance,
Bi gDeci mal charge)throws I nsufficientBal anceExcepti on,
Renot eExcept i on;

Note: Since you used simple names of classes to generate the home methods and
finder methods, you have to open the home interface and press Alt-Shift-F to gen-
erate the necessary import statements.

HOME INTERFACE

create M ethod Definitions

Each create method in the home interface must conform to the following
requirements:

It must have the same number and types of arguments asits matching ej b-
Cr eat e method in the enterprise bean class.

It must return the remote interface type of the enterprise bean.

e Thethrows clause must include the exceptions specified by the t hr ows
clause of the corresponding ej bCr eat e and ej bPost Cr eat e methods.

* Thet hrows clause must includethej avax. ej b. Cr eat eExcepti on.

+ |If the method is defined in a remote—and not a loca—home interface,
then thet hr ows clause must include thej ava. r mi . Renot eExcept i on.

Finder Method Definitions

Every finder method in the home interface corresponds to a finder method in the
entity bean class. The name of afinder method in the home interface begins with
find, whereas the corresponding name in the entity bean class begins with
ej bFi nd. For example, the Savi ngsAccount Renot eHore class defines the
fi ndByLast Nane method, and the Savi ngsAccount Bean class implements the
ej bFi ndByLast Nane method. The rules for defining the signatures of the finder
methods of a home interface follow.

» Thenumber and types of arguments must match those of the corresponding
method in the entity bean class.

« Thereturn type must be the entity bean’s remote interface type or a collec-
tion of those types.

» Theexceptionsinthet hr ows clause must include those of the correspond-
ing method in the entity bean class.

* Thet hrows clause must contain thej avax. ej b. Fi nder Excepti on.

« |If the method is defined in a remote—and not a loca—home interface,
then thet hr ows clause must include thej ava. r mi . Renpt eExcept i on.

Home M ethod Definitions

Each home method definition in the home interface corresponds to a method in
the entity bean class. In the home interface, the method name is arbitrary, pro-
vided that it does not begin with cr eat e or fi nd. In the bean class, the matching

183

184

BEAN-MANAGED PERSISTENCE EXAMPLES

method name begins with ej bHorre. For example, in the Savi ngsAccount Bean
class the name is ej bHorreChar geFor LowBal ance, but in the Savi ngsAccoun-
t Renot eHorre interface the nameis char geFor LowBal ance.

The home method signature must follow the same rules specified for finder
methods in the preceding section (except that a home method does not throw a
Fi nder Except i on).

Remote | nterface

The remote interface usually extends j avax. ej b. EJBbj ect and defines the
business methods that a remote client can invoke. Because the IDE enforces best
design pratcices, it registers all of an entity bean’s business methods in a busi-
ness interface. The remote interface then extends the remote business interface,
and the bean class only implements the business interface.

The remote interface is therefore empty:

package bank;
public interface Savi ngsAccount Renote extends
j avax. ej b. EJBObj ect , bank. Savi ngsAccount Renpt eBusi ness {

}
Here isthe Savi ngsAccount Renpt eBusi ness interface:

i mport java.rm . RenoteException;
i mport java. mat h. Bi gDeci nal ;

public interface Savi ngsAccount Renote extends EJBOhject {

voi d debit (Bi gDeci mal anopunt)
throws | nsufficientBal anceExcepti on, RenoteException;

voi d credit(Bi gDeci nal anount)
t hrows Renot eExcepti on;

String getld()
t hrows Renot eExcepti on;

String getFirstNane()
t hrows Renot eExcepti on;

String getlLast Nanme()
t hr ows Renot eExcepti on;

RUNNING THE SAVINGSACCOUNT EXAMPLE 185

Bi gDeci nal get Bal ance()
throws Renot eExcepti on;

Note: Since you used simple names of classes to generate the business methods,
you have to open the business interface and press Alt-Shift-F to generate the neces-
sary import statements.

The requirements for the method definitions in a remote interface are the same
for session beans and entity beans:

» Each method in the remote interface must match amethod in the enterprise
bean class.

» The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

» The arguments and return values must be valid RMI types.
* Thet hrows clause must includej ava. r i . Renot eExcepti on.

A local interface has the same requirements, with the following exceptions:

» The arguments and return values are not required to be valid RMI types.
* Thet hrows clause does not includej ava. r m . Renot eExcept i on.

Running the SavingsAccount Example

Before you run this example, you have to create the database and deploy the
Savi ngsAccount . j ar file.

Creating the Sample Database

The instructions that follow explain how to use the Savi ngsAccount Bean exam-
ple with PointBase, the database software that is included in the Application
Server bundle.

1. In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.

186

BEAN-MANAGED PERSISTENCE EXAMPLES

2. Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/j 2eet ut ori al 14/ exanpl es/ ej b/ savi ngsaccount/
c. Type the following command, which runsthecr eat e. sql script:
asant -buildfile create-db.xnl

. In the Runtime window, expand the Databases node, right-click the

j dbc: poi nt base: server://| ocal host: 9092/ sun- appser v-sanpl es
node, and choose Connect. Type pbpubl i ¢ asthe password and click OK.
Once the connection is established, expand the connection node's Tables
node. There should be a node for the SAVI NGSACCOUNT table.

Deploying the Application

1. In the Projects window, right-click the SavingsAccount project node and

choose Deploy Project. The IDE does the following
» Buildsthe EJB module
o Startsthe application server if it is not already started

» Configures the data source and connection pool on the application
server

» Deploysthe EJB module to the application server

2. In the Runtime window, expand Servers—Sun Java System Application

Server—Applications—~EJB Modules and verify that the Savi ngsAccount
EJB module exists on the server.

Running the Client

The source code for the SavingsAccountdient project is in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ savi ngsaccount directory. When
you open the project, you have to resolve the references to libraries on the
project’s classpath.

1. Choose File—»Open Project (Ctrl-Shift-O). In the file chooser, go to

<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ savi ngsaccount/, select
the savi ngsAccount d i ent directory, and choose Open Project.

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 187

2. The project needs to know the location of some JAR files on its classpath
and the SavingsAccount project. Right-click the SavingsAccountClient
project and choose Resolve Reference Problems. Select the * Savi ngsAc-
count” project could not be found nmessage and click Resolve. In
the file chooser, select either the completed SavingsAccount project in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ savi ngsaccount/ or the
project you created and click OK.

3. Select the“ appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1'i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolvesthe location of j 2ee. j ar. Click Close.

4. Right-click the SavingsAccountClient project and choose Run Project.

The client should display the following lines:

bal ance = 68. 25

bal ance = 32.55

456: 44.77

730: 19.54

268: 100. 07

836: 32.55

456: 44.77

4

7
To modify this example, see the instructions in Modifying the J2EE
Application (page 139).

Mapping Table Relationships for Bean-
M anaged Persistence

In arelational database, tables can be related by common columns. The relation-
ships between the tables affect the design of their corresponding entity beans.
The entity beans discussed in this section are backed up by tables with the fol-
lowing types of relationships:

e One-to-one

¢ One-to-many

* Many-to-many

188

BEAN-MANAGED PERSISTENCE EXAMPLES

One-to-One Relationships

In a one-to-one relationship, each row in a table is related to a single row in
another table. For example, in a warehouse application, a st or agebi n table
might have a one-to-one relationship with a wi dget table. This application
would model a physical warehouse in which each storage bin contains one type
of widget and each widget resides in one storage bin.

Figure 71 illustrates the st or agebi n and wi dget tables. Because the st or age-
bi ni d uniquely identifiesarow inthest or agebi n table, it isthat table’s primary
key. The wi dgeti d is the primary key of the wi dget table. The two tables are
related because the wi dget i d isalso acolumnin the st or agebi n table. By refer-
ring to the primary key of the wi dget table, the wi dgeti d in the st or agebi n
table identifies which widget residesin aparticular storage bin in the warehouse.
Because the wi dgeti d of the st oragebi n table refers to the primary key of
another table, it is called a foreign key. (The figures in this chapter denote a pri-
mary key with PK and aforeign key with FK.)

Figure 7-1 One-to-One Table Relationship

A dependent (child) table includes aforeign key that matches the primary key of
the referenced (parent) table. The values of the foreign keys in the st or agebi n
(child) table depend on the primary keysin thewi dget (parent) table. For exam-
ple, if the st or agebi n table has arow with awi dget i d of 344, then the widget
table should also have arow whose wi dgeti d is 344.

When designing a database application, you can choose to enforce the depen-
dency between the parent and child tables. There are two ways to enforce such a
dependency: by defining areferential constraint in the database or by performing

ONE-TO-ONE RELATIONSHIPS

checks in the application code. The st or agebi n table has areferential constraint
named f k_wi dget i d:

CREATE TABLE st or agebi n
(storagebi ni d VARCHAR(3)
CONSTRAI NT pk_st oragebi n PRI MARY KEY,
wi dgetid VARCHAR(3),
quantity | NTEGER,
CONSTRAI NT fk_wi dgetid
FOREI GN KEY (wi dgeti d)
REFERENCES wi dget (wi dgetid));

The source code for the following exampleisin this directory:
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ st or agebi n/

To open the project, choose File>Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial 14/examples/ejb/storagebin/, Select the st or age-
Bi n directory, and choose Open Project.

The st or ageBi nBean and W dget Bean classes illustrate the one-to-one relation-
ship of the st or agebi n and wi dget tables. The St or ageBi nBean class contains
variables for each column in the st or agebi n table, including the foreign key,
wi dget | d:

private String storageBinld;
private String w dgetld;
private int quantity;

The ej bFi ndByW dget I d method of the StorageBi nBean class returns the
st or ageBi nl d that matches agiven wi dget I d:

public String ej bFi ndByW dget|d(String w dgetld)
throws Fi nder Exception {

String storageBinld;

try {
storageBinld = sel ect ByW dget | d(w dgetld);
} catch (Exception ex) {
t hrow new EJBException("ej bFi ndByW dgetld: " +
ex. get Message());

}

if (storageBinld == null) {
t hr ow new bj ect Not FoundExcepti on

189

190 BEAN-MANAGED PERSISTENCE EXAMPLES

("Row for widgetld " + widgetld + " not found.");

}
el se {

return storageBinld;
}

}

Theej bFi ndByW dget | d method locates the wi dget | d by querying the database
inthe sel ect ByW dget | d method:

private String sel ectByWdgetld(String w dgetld)
throws SQLException {

String storageBinld;

makeConnecti on();
String sel ectStatement =

"sel ect storagebinid " +

"from storagebi n where w dgetid = ? "
Pr eparedSt at ement prepStm =

con. prepar eSt at ement (sel ect St at enent) ;
prepStnt.setString(1l, w dgetld);

Resul tSet rs = prepStnt. executeQuery();

if (rs.next()) {
storageBinld = rs.getString(1);

}
el se {

storageBinld = null;
}

prepStnt.cl ose();
rel easeConnection();
return storageBinld;

}

To find out in which storage bin a widget resides, the St or ageBi nCl i ent pro-
gram callsthefi ndByw dget | d method:

String widgetld = "777";
StorageBin storageBin =
st orageBi nHone. fi ndByW dget | d(wi dget | d);
String storageBinld = (String)storageBin.getPrinaryKey();
int quantity = storageBin.getQantity();

ONE-TO-ONE RELATIONSHIPS

Running the StorageBinBean Example

1

2.

In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.

Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ st or agebi n/

c¢. Typethe following command, which runsthecr eat e. sql script:
asant -buildfile create-db.xmn

. Choose File->Open Project (Ctrl-Shift-O). In the file chooser, go to

<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ st oragebi n/, select the
St or ageBi ndl i ent directory, and choose Open Project.

. The project needs to know the location of some JAR files on its classpath

and the StorageBin project. Right-click the StorageBinClient project and
choose Resolve Reference Problems. Select the “ St or ageBi n” proj ect
could not be found nessage and click Resolve. In the file chooser,
select either the compl eted StorageBin project in
<INSTALL>/ j 2eet ut or i al 14/ exanpl es/ e] b/ st or agebi n/ or the project
you created and click OK.

. Select the“ appserv-rt.jar” file/folder could not be found mes

sage and click Resolve. Navigate to the | i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolvesthe location of j 2ee. j ar. Click Close.

. Right-click the StorageBin project and choose Deploy Project. The IDE

builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

. Right-click the StorageBinClient project and choose Run Project. The cli-

ent should display the following:

777 388 500 1.0 Duct Tape

191

192

BEAN-MANAGED PERSISTENCE EXAMPLES

One-to-M any Relationships

If the primary key in a parent table matches multiple foreign keys in a child
table, then the relationship is one-to-many. This relationship is common in data-
base applications. For example, an application for a sports league might access a
t eamtable and a pl ayer table. Each team has multiple players, and each player
belongs to a single team. Every row in the child table (p! ayer) has aforeign key
identifying the player’s team. This foreign key matches the t eamtable’s primary

key.

The sections that follow describe how you might implement one-to-many rela
tionships in entity beans. When designing such entity beans, you must decide
whether both tables are represented by entity beans, or only one.

A Helper Classfor the Child Table

Not every database table needs to be mapped to an entity bean. If a database
table doesn’'t represent a business entity, or if it stores information that is con-
tained in another entity, then you should use a hel per class to represent the table.
In an online shopping application, for example, each order submitted by a cus-
tomer can have multiple line items. The application stores the information in the
database tables shown by Figure 7-2.

Figure 7-2 One-to-Many Relationship: Order and Line Items

Not only does aline item belong to an order, but it also does not exist without the
order. Therefore, the i nei t ens table should be represented with a helper class
and not with an entity bean. Using a helper class in this case is not required, but
doing so might improve performance because a helper class uses fewer system
resources than does an entity bean.

ONE-TO-MANY RELATIONSHIPS

The source code for the following exampleisin this directory:
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ or der/

To open the project, choose File->Open Project (Ctrl-Shift-O). In the file
chooser, go to <I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ or der/ , select the
O der directory, and choose Open Project.

The Li nel temand O der Bean classes show how to implement a one-to-many
relationship using a helper class (Li neltem). The instance variables in the
Li nel t emclass correspond to the columns in the 1i nei t ens table. Thei t enNo
variable matches the primary key for thel i nei t ens table, and the or der 1 d vari-
able represents the table's foreign key. Here is the source code for the Li nel t em
class:

public class Linelteminplenments java.io. Serializable {

String productld;

int quantity;
doubl e unitPrice;
int itenmNo;

String orderld;

public Linelten(String productld, int quantity,
doubl e unitPrice, int itemNo, String orderld) {

this.productld = productld;
this.quantity = quantity;
this.unitPrice = unitPrice;
this.itemNo = itenlNo;
this.orderld = orderld;

}

public String getProductld() {
return productld;

}
public int getQuantity() {

return quantity;
}

public double getUnitPrice() {
return unitPrice;

}

public int getltemNo() {

193

194

BEAN-MANAGED PERSISTENCE EXAMPLES

return itenmNo;
}

public String getOrderld() {
return orderld;

}
}

The Or der Bean class contains an ArrayLi st variable named | i nel t ens. Each
elementinthel i nel t ens variableisali nel t emobject. Thel i nel t ens variable
is passed to the Or der Bean classin the ej bCr eat e method. For every Li nel t em
object in the i nel t ens variable, the ej bCr eat e method inserts a row into the
I'i nei tems table. It also inserts a single row into the or der s table. The code for
the ej bCr eat e method follows:

public String ejbCreate(String orderld, String customerld,
String status, double total Price, ArrayList |ineltens)
throws CreateException {

try {
i nsert Order (orderld, custonmerld, status, total Price);
for (int i =0; i <lineltens.size(); i++) {

Lineltemitem = (Lineltemlineltens.get(i);
insertltem(iten);
}
} catch (Exception ex) {
throw new EJBException("ejbCreate: " +
ex. get Message());

}

this.orderld = orderld;
this.custonerld = custonerld;
this.status = status;
this.totalPrice = total Price;
this.lineltens = lineltens ;

return orderld;

ONE-TO-MANY RELATIONSHIPS

Theorderdi ent program createsand loads an ArrayLi st of Li nel t emobjects.
The program passes this Arr ayLi st to the entity bean when it invokes thecr e-
at e method:

ArrayList lineltems = new ArraylList();

I'ineltens. add(new Linelten("p23", 13, 12.00, 1, "123"));
I'ineltens. add(new Li nelten("p67", 47, 89.00, 2, "123"));
lineltens. add(new Li nelten("pl1l", 28, 41.00, 3, "123"));

O der Renot e duke = hone. create("123", "c44", "open",
totalltens(lineltens), lineltens);

Other methods in the O der Bean class also access both database tables. The
ej bRenmove method, for example, not only deletes a row from the or der s table
but also deletes all corresponding rowsinthel i nei t ens table. Theej bLoad and
ej bSt or e methods synchronize the state of an Or der Bean instance, including the
lineltenms ArrayList,withtheorders andli neitens tables.

The ej bFi ndByPr oduct | d method enables clientsto locate all orders that have a
particular product. This method queriestheli nei t ens table for all rows with a
specific product I d. The method returns a Col | ecti on of Order objects. The
O derdient program iterates through the Col | ecti on and prints the primary
key of each order:

Coll ection ¢ = hone. findByProduct!d("p67");

Iterator i=c.iterator();

while (i.hasNext()) {
OrderRemote order = (OrderRenpte)i. next();
String id = (String)order.getPrinmaryKey();
System out.println(id);

Running the Order Bean Example

1. In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.

2. Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ or der/

195

196

BEAN-MANAGED PERSISTENCE EXAMPLES

c. Type the following command, which runsthecreat e. sql script:
asant -buildfile create-db.xnl

. Choose File—>Open Project (Ctrl-Shift-O). In the file chooser, go to

<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ order/, select the Order-
C i ent directory, and choose Open Project.

. The project needs to know the location of some JAR files on its classpath

and the Order project. Right-click the OrderClient project and choose
Resolve Reference Problems. Select the“ Or der” proj ect coul d not be
found message and click Resolve. In the file chooser, select either the
completed Order project in <INSTALL>/ | 2eet ut ori al 14/ exam
pl es/ ej b/ order/ or the project you created and click OK.

. Select the“appserv-rt.jar” file/folder could not be found mes

sage and click Resolve. Navigate to the 1 i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j 2ee. j ar. Click Close.

. Right-click the Order project and choose Deploy Project. The IDE builds

the project, deploysthe EJB module, and registersa JDBC connection pool
and database resource for the project.

. Right-click the OrderClient project and choose Run Project. The client

should display the following:

123 1 p23 12.0
123 2 p67 89.0
123 3 pll1 41.0

123
456

An Entity Bean for the Child Table

You should consider building an entity bean for a child table under the following
conditions:

Theinformation in the child table is not dependent on the parent table.

The business entity of the child table could exist without that of the parent
table.

The child table might be accessed by another application that does not
access the parent table.

ONE-TO-MANY RELATIONSHIPS

These conditions exist in the following scenario. Suppose that each sales repre-
sentative in a company has multiple customers and that each customer has only
one sales representative. The company tracks its sales force using a database
application. In the database, each row in the sal esrep table (parent) matches
multiple rows in the cust oner table (child). Figure 7-3 illustrates this relation-
ship.

w

Figure 7-3 One-to-Many Relationship: Sales Representative and Customers

The sal esRepBean and Cust oner Bean entity bean classes implement the one-to-
many relationship of thesal es and cust oner tables.

The source code for this exampleisin this directory:
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ sal esrep/

To open the project, choose File>Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial 14/examples/ejb/salesrep/, Select the SalesRep direc-
tory, and choose Open Project.

The sal esRepBean class contains a variable nhamed cust orrer | ds, which is an
ArraylLi st of String elements. These st ri ng elements identify which custom-
ers belong to the sales representative. Because the cust oner | ds variable reflects
this relationship, the sal esRepBean class must keep the variable up-to-date.

The Sal esRepBean class instantiates the cust oner | ds variable in the set Entii -
tyCont ext method and not in ej bCreat e. The container invokes set Entity-
Cont ext only once—when it creates the bean instance—thereby ensuring that
cust oner I ds is instantiated only once. Because the same bean instance can
assume different identities during its life cycle, instantiating cust omerlds in
ej bCr eat e might cause multiple and unnecessary instantiations. Therefore, the

197

198 BEAN-MANAGED PERSISTENCE EXAMPLES

Sal esRepBean class instantiates the cust orrer | ds variable in set Enti t yCon-
text:

public void setEntityContext(EntityContext context) {

this.context = context;
custonerlds = new ArraylList();

try {
Context initial = new Initial Context();

oj ect objref =
initial.lookup("java: conp/env/ejb/Custoner");

cust orrer Honre =

(Cust oner Renot eHone) Por t abl eRenpt eCbj ect . narr ow(obj r ef ,
Cust omer Renot eHonre. cl ass) ;
} catch (Exception ex) {
t hrow new EJBException("setEntityContext: " +
ex. get Message());

}
}

Invoked by the ej bLoad method, | oadCust oner | ds is a private method that
refreshes the cust omer 1 ds variable. There are two approaches to coding a
method such as| oadCust orer | ds: fetch the identifiers from the cust oner data-
base table, or get them from the cust oner Bean entity bean. Fetching the identifi-
ers from the database might be faster, but it exposes the code in the
Sal esRepBean class to the cust oner Bean bean’s underlying database table. In
the future, if you were to change the Cust oner Bean bean’s table (or move the
bean to adifferent Application Server), you might need to change the Sal esRep-
Bean code. But if the Sal esRepBean class gets the identifiers from the cust om
er Bean entity bean, no coding changes would be required. The two approaches
present a trade-off: performance versus flexibility. The Sal esRepBean example
opts for flexibility, loading the cust omerids variable by calling the fi nd-
BySal esRep and get Pri mar yKey methods of Cust orer Bean. Here is the code
for the | oadCust oner | ds method:

private void | oadCustomerlds() {
custonerlds. clear();

try {
Col l ection ¢ = custonerHomne. fi ndBySal esRep(sal esRepl d);

Iterator i=c.iterator();

ONE-TO-MANY RELATIONSHIPS

while (i.hasNext()) {
Cust oner Renot e customer = (CustomerRenote)i.next();
String id = (String)custoner.getPrimryKey();
cust oner | ds. add(id);

}

} catch (Exception ex) {
t hr ow new EJBExcepti on("Exception in | oadCustonerlds: " +
ex. get Message());

}
}

If acustomer’s sales representative changes, the client program updates the data-
base by calling the set Sal esRepl d method of the cust orer Bean class. The next
time a business method of the Sal esRepBean classiscalled, the ej bLoad method
invokes | oadCust omrer I ds, which refreshes the cust onerlds variable. (To
ensure that ej bLoad is invoked before each business method, set the transaction
attributes of the business methods to Requi red.) For example, the sal esRep-
dient program changes the sal esRepl d for a customer named Mary Jackson
asfollows:

Cust omer Renpbte mary = custoner Hone. fi ndByPri maryKey("987");
mary. set Sal esRepl d("543");

The sal esRepl d value 543 identifies a sales representative named Janice
Martin. To list al of Janice's customers, the Sal esRepd i ent program invokes
the get Cust orrer | ds method, iterates through the Arr ayLi st of identifiers, and
locates each custonerBean entity bean by caling its findByPri maryKey
method:

Sal esRepRenpt e j ani ce = sal esHone. fi ndByPri naryKey("543");
ArraylLi st a = janice.getCustonerlds();
i = a.iterator();

while (i.hasNext()) {
String custonerld = (String)i.next();
Cust oner Renot e custonmer =

cust oner Home. fi ndByPri mar yKey(cust onerld);
String nane = customner. get Nane();
Systemout.println(custonmerlid + ": " + nane);

199

200

BEAN-MANAGED PERSISTENCE EXAMPLES

Running the SalesRepBean Example

1

In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.

. Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/j 2eet ut ori al 14/ exanpl es/ ej b/ sal esrep/

c. Type the following command, which runsthecreat e. sql script:
asant -buildfile create-db. xm

. Choose File->Open Project (Ctrl-Shift-O). In the file chooser, go to

<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ sal esrep/, sSelect the
Sal esRepd i ent directory, and choose Open Project.

. The project needs to know the location of some JAR files on its classpath

and the SalesRep project. Right-click the SalesRepClient project and
choose Resolve Reference Problems. Select the “ Sal esRep” proj ect
could not be found nessage and click Resolve. In the file chooser,
select either the completed SalesRep project in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ sal esrep/ or the project
you created and click OK.

. Select the“appserv-rt.jar” file/folder could not be found mes

sage and click Resolve. Navigate to the I i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j 2ee. j ar. Click Close.

. Right-click the SalesRep project and choose Deploy Project. The IDE

builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

. Right-click the SalesRepClient project and choose Run Project. The client

should display the following:

custonerld

= 221
customerld = 388
customerld = 456
custonerld = 844

987: Mary Jackson
221: Alice Smth
388: Bill WIIlianson

MANY-TO-MANY RELATIONSHIPS

456: Joe Smith
844: Buzz Muirphy

Many-to-M any Relationships

In a many-to-many relationship, each entity can be related to multiple occur-
rences of the other entity. For example, a college course has many students and
each student may take several courses. In a database, this relationship is repre-
sented by a cross-reference table containing the foreign keys. In Figure 74, the
cross-reference table is the enr ol | nent table. These tables are accessed by the
St udent Bean, Cour seBean, and Enr ol | er Bean classes.

Figure 74 Many-to-Many Relationship: Students and Courses

The source code for this example isin this directory:
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ enrol | er/

To open the project, choose File—>Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial 14/examples/ejblenroller/, select the Enroller direc-
tory, and choose Open Project.

201

202

BEAN-MANAGED PERSISTENCE EXAMPLES

The st udent Bean and Cour seBean classes are complementary. Each class con-
tainsan ArrayLi st of foreign keys. The st udent Bean class containsan Arr ayL-
i st named cour sel ds, which identifies the courses the student is enrolled in.
Similarly, the Cour seBean class containsan ArrayLi st hamed st udent | ds.

The ej bLoad method of the St udent Bean class adds elements to the cour sel ds
ArrayLi st by caling | oadCour sel ds, a private method. The | oadCour sel ds
method gets the course identifiers from the Enrol | er Bean session bean. The
source code for the | oadCour sel ds method follows:

private void | oadCourselds() {

courselds.clear();

try {
Enrol |l erRenote enroller = enroll erHome. create();

ArrayList a = enroller.getCoursel ds(studentld);
coursel ds. addAl | (a);

} catch (Exception ex) {
t hr ow new EJBExcepti on("Exception in | oadCourselds: " +
ex. get Message());

}
}

Invoked by the 1| oadCoursel ds method, the get Coursel ds method of the
Enrol | er Bean class queriestheenr ol | nent table:

sel ect courseid fromenroll nment
where studentid = ?

Only the Enrol | er Bean class accesses the enrol | nent table. Therefore, the
Enrol | er Bean class manages the student-course relationship represented in the
enrol | ment table. If a student enrolls in a course, for example, the client calls
theenrol I business method, which inserts arow:

insert into enroll nment
val ues (studentid, courseid)

If a student drops a course, the unenr ol I method deletes a row:

del ete from enrol | nent
where studentid = ? and courseid = ?

MANY-TO-MANY RELATIONSHIPS

And if a student leaves the school, the del et eSt udent method deletes all rows
in the table for that student:

del ete from enrol | nent
where student = ?

The Enrol | er Bean class does not delete the matching row from the st udent
table. That action is performed by the ej bRenove method of the St udent Bean
class. To ensure that both deletes are executed as a single operation, you must
ensure that they belong to the same transaction.

Running the Enroller Bean Example

1. In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.

2. Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ enrol | er/

c. Typethe following command, which runsthecr eat e. sql script:
asant -buildfile create-db.xmn

3. Choose File>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ enrol ler/, select the
Enrol I erd i ent directory, and choose Open Project.

4. The project needs to know the location of some JAR files on its classpath
and the Enroller project. Right-click the EnrollerClient project and choose
Resolve Reference Problems. Select the“Enrol | er” project coul d not
be found message and click Resolve. In the file chooser, select either the
completed Enroller project in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ enrol l er/ or the project
you created and click OK.

5. Select the“ appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1'i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolvesthe location of j 2ee. j ar. Click Close.

203

204 BEAN-MANAGED PERSISTENCE EXAMPLES

6. Right-click the Enroller project and choose Deploy Project. The IDE
builds the project, deploys the EJB module, and registers a JDBC connec-
tion pool and database resource for the project.

7. Right-click the EnrollerClient project and choose Run Project. The client
should display the following:

Deni se Smith:

220 Power J2EE Progranmi ng

333 XML Made Easy

777 An Introduction to Java Programm ng

An I ntroduction to Java Progrannm ng:
823 Denise Smith

456 Joe Snmith
388 Elizabeth Wllis

Primary Keysfor Bean-M anaged
Persistence

You specify the primary key class in the entity bean’s deployment descriptor. In
most cases, your primary key classwill beastring, an i nteger, or some other
class that belongs to the J2SE or J2EE standard libraries. For some entity beans,
you will need to define your own primary key class. For example, if the bean has
a composite primary key (that is, one composed of multiple fields), then you
must create a primary key class.

ThePrimary Key Class

The following primary key class is a composite key, the product | d and ven-
dor | d fields together uniquely identify an entity bean.

public class ItenKey inplenments java.io.Serializable {

public String productld;
public String vendorld;

public ItenKey() { };

public ItenKey(String productld, String vendorld) {

}

THE PRIMARY KEY CLASS 205

this.productld = productld;
this.vendorld = vendorl d;

}

public String getProductld() ({

return productld;

}

public String getVendorld() {

return vendorl d;

}

publ i ¢ bool ean equal s(Obj ect other) {

if (other instanceof |tenKey) {
return (productld.equal s(((!temnmKey)other). productld)
&& vendor | d. equal s(((ItenKey)other).vendorld));

}
return fal se;

}

public int hashCode() {

return productld. concat (vendorld). hashCode();

For bean-managed persistence, a primary key class must meet these require-

ments:

The access control modifier of the class must be publ i c.
All fields must be declared as publ i c.
The class must have a public default constructor.

The class must implement the hashCode() and equal s(Cbj ect ot her)
methods.

The class must be seriaizable.

206 BEAN-MANAGED PERSISTENCE EXAMPLES

Primary Keysin the Entity Bean Class

With bean-managed persistence, the ej bCr eat e method assigns the input param-
eters to instance variables and then returns the primary key class:

public ItenKey ejbCreate(String productld, String vendorld,
String description) throws CreateException {

if (productld == null || vendorld == null) {
throw new Creat eExcepti on(
"The productld and vendorld are required.");

}

this.productld = productld;
this.vendorld = vendorld;
thi s.description = description;

return new |tenKey(productld, vendorld);

}

The ej bFi ndByPri mar yKey verifies the existence of the database row for the
given primary key:

public ItenKey ejbFi ndByPri maryKey(IltenKey pri maryKey)
t hrows Fi nder Exception {

try {
if (selectByPrimaryKey(primaryKey))
return prinmaryKey;

}

private bool ean sel ect ByPri maryKey(ItenKey prinmaryKey)
throws SQLException {

String selectStatenment =

"sel ect productid " +

"fromitemwhere productid = ? and vendorid = ?";
Pr epar edSt at ement prepStm =

con. prepar eSt at enent (sel ect St at enent) ;
prepStnt.setString(1l, prinmaryKey.getProductld());
prepStnt.setString(2, primaryKey.getVendorld());
Resul tSet rs = prepStnt. executeQuery();
bool ean result = rs.next();
prepStnt . cl ose();
return result;

GETTING THE PRIMARY KEY 207

Gettingthe Primary Key

A client can fetch the primary key of an entity bean by invoking the get Pri na-
ryKey method of the EJBbj ect class:

Savi ngsAccount Renot e account;
String id = (String)account.getPrimaryKey();

The entity bean retrieves its own primary key by calling the get Pri mar yKey
method of the Ent i t yCont ext class:

EntityCont ext context;

String id = (String) context.getPrimaryKey();

208 BEAN-MANAGED PERSISTENCE EXAMPLES

8

Container-Managed
Per sistence Examples

AN entity bean with container-managed persistence (CMP) offers important
advantages to the bean developer. First, the EJB container handles all database
storage and retrieval calls. Second, the container manages the relationships
between the entity beans. Because of these services, you don’'t have to code the
database access calls in the entity bean. Instead, you specify settings in the
bean’'s deployment descriptor. Not only does this approach save you time, but
also it makes the bean portable across various database servers.

This chapter focuses on the source code and deployment settings for an example
called Rost er, an application that features entity beans with container-managed
persistence. If you are unfamiliar with the terms and concepts mentioned in this
chapter, please consult the section Container-Managed Persistence (page 113).

Overview of the Roster M odule

The Rost er module maintains the team rosters for playersin sports leagues. The
example has five components. The Rost er d i ent component is an application
client that accesses the Rost er Bean session bean through the bean's remote
interfaces. Rost er Bean accesses three entity beans—pPl ayer Bean, TeanBean,
and LeagueBean—through their local interfaces.

209

210

CONTAINER-MANAGED PERSISTENCE EXAMPLES

The entity beans use container-managed persistence and relationships. The
TeanBean and Pl ayer Bean entity beans have a bidirectional, many-to-many rela-
tionship. In abidirectional relationship, each bean has a relationship field whose
value identifies the related bean instance. The multiplicity of the TeanBean-
Pl ayer Bean relationship is many-to-many: Players who participate in more than
one sport belong to multiple teams, and each team has multiple players. The
LeagueBean and TeanBean entity beans also have a bidirectional relationship,
but the multiplicity is one-to-many: A league has many teams, but a team can
belong to only one league.

Figure 8-1 shows the components and relationships of the Rost er module. The
dotted lines represent the access gained through invocations of the JNDI | ookup
method. The solid lines represent the container-managed rel ationships.

Many : Many Many : One

RosterClient |

Figure8-1 Roster Example

Creating the Roster EJB Module

To create this project in the IDE, you will create an EJB module project, create
the database in PointBase, and generate the CMP entity beans from the database.

CREATING THE PROJECT 211

You will then create a session bean through which the client application accesses
the entity beans.

Complete versions of both the EJB module and the client application for this
example are in the <INSTALL>/j 2eetutori al 14/ exanpl es/ ej b/ cnpr ost er
directory.

Creating the Project

1. Choose File—New Project (Ctrl-Shift-N).
2. From the Enterprise template category, select EJB Module and click Next.

3. Name the project Rost er, specify alocation for the project, and click Fin-
ish.

Creating the Database Tables

The Rost er example uses the database tables shown in Table 8-2.

212

CONTAINER-MANAGED PERSISTENCE EXAMPLES

RosterApp tables '

Foreign Key

TEAM_PLAYER

+PLAYER_1D: VARCHAR ()

+TEAM _1D: VARCHAR(B)

+I0¢ VARCHAR(B)
+NAME: VARCHAR{Z4)
+CITY: VARCHAR({Z4)
+LEAGUE ID: VARGHAR(E)

PLAYER +ID: VARCHAR(E)
—uipbls +NAME: VARCHAR{24)
+I0: VARCHAR(E) +SPORT: VARCHAR{24)

+HAME: VARCHAR{2A4)
+POSITION: VARCHAR(24)
+5SALARY: VARCHAR({2)

Figure8-2 Database Tablesin Rost er

The instructions that follow explain how to use the Rost er example with Point-
Base, the database software that is included in the Application Server bundle.

1. Choose Tools—PointBase Database— Start Local PointBase Database.

2. Create the database tables by running the cr eat e. sql script.
a Make sure that the appsrv.root property

in

your

<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of

your local Application Server installation.
b. In atermina window, go to this directory:
<I NSTALL>/j 2eet ut ori al 14/ exanpl es/ ej b/ cnproster/

c. Type the following command, which runsthecreat e. sql script:

asant -buildfile create-db. xn

3. In the Runtime window, expand the Databases node, right-click the
j dbc: poi nt base: server:/ /1 ocal host: 9092/ sun- appser v- sanpl es
node, and choose Connect. Type pbpubl i ¢ asthe password and click OK.

GENERATING THE CMP ENTITY BEANS 213

Once the connection is established, expand the connection node's Tables
node. There should be nodes for the following tables:

. LEAGUE

« PLAYER

. TEAM

« TEAM PLAYER

Generating the CMP Entity Beans

1. In the Projects window, right-click the Enterprise Beans node for the Ros-
ter project and choose New—CMP Entity Beans From Database.

2. In the JDBC Connection combo box, select j dbc: poi nt base: / /| ocal -
host : 9092/ sun-appserv-samples. |n the Package field, type t eam Leave the
default settingsin the rest of the wizard and click Next.

3. From the list, select PLAYER, LEAGUE, TEAM, and TEAM PLAYER and click
Add. Then click Finish. You can view the generated entity beans under the
project’s Enterprise Beans node.

The Player Bean Code

The Pl ayer Bean entity bean represents a player in a sports league. Like any
local entity bean with contai ner-managed persistence, Pl ayer Bean heeds the fol-
lowing code:

« Entity bean class (Pl ayer Bean)

» Loca homeinterface (Pl ayer Local Hone)

» Local interface (Pl ayer Local)

In addition to these standard files, the IDE also creates a business interface
(Pl ayer Local Busi ness) in which it registers business methods.

The source code for this example is in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnproster/ Roster/src/java
directory.

214 CONTAINER-MANAGED PERSISTENCE EXAMPLES

Entity Bean Class

The code of the entity bean class must meet the container-managed persistence
syntax requirements. First, the class must be defined as publ i ¢ and abstract .
Second, the class must implement the following:

* TheEntityBean interface

e Zero or more ej bCr eat e and ej bPost Cr eat e methods

* Theget and set access methods, defined as abst ract , for the persistent
and relationship fields

* Any select methods, defining them as abst r act
e The home methods
* The business methods

The entity bean class must not implement these methods:

* Thefinder methods
e Thefinal i ze method

Differences between Container-M anaged and Bean-
Managed Code

Because it contains no callsto access the database, an entity bean with container-
managed persistence requires alot less code than one with bean-managed persis-
tence. For example, the Pl ayer Bean. j ava source file discussed in this chapter is
much smaller than the Savi ngsAccountBean.java code documented in
Chapter 7. Table 8-1 compares the code of the two types of entity beans.

Table8-1 Coding Differences between Persistent Types

Difference Container-Managed Bean-M anaged

Class definition Abstract Not abstract

Database access cals Handled by container Coded by developers

Persistent state Reprgeented by virtual persis Coded asinstance variables
tent fields

Access methods for persis- Required None

tent and relationship fields

ENTITY BEAN CLASS

Table8-1 Coding Differences between Persistent Types (Continued)

Difference Container-M anaged Bean-Managed

findByPrimaryKey method Handled by container Coded by developers
Handled by container, but the

Customized finder methods | developer must define the Coded by developers
EJB QL queries

Select methods Handled by container None

Return value of ebCreate null Must be the primary key

Note that for both types of persistence, the rules for implementing business and
home methods are the same. See the sections The Business Methods (page 180)
and The Home Methods (page 182) in Chapter 7.

Access M ethods

An entity bean with container-managed persistence has persistent and relation-
ship fields. These fields are virtual, so you do not code them in the class as
instance variables. Instead, you specify them in the bean’s deployment descrip-
tor. To permit access to the fields, you define abstract get and set methods in
the entity bean class.

Access Methods for Persistent Fields

The EJB container automatically performs the database storage and retrieval of
the bean’s persistent fields. The deployment descriptor of Pl ayer Bean specifies
the following persistent fields:

e id(primary key)
* nane
e position
e« salary
You can view the CMP fields for each bean by expanding the project’s Configu-

ration Files node, double-clicking ej b-j ar. xn , and expanding the CMP Fields
section for the bean.

215

216 CONTAINER-MANAGED PERSISTENCE EXAMPLES

The Pl ayer Bean class defines the access methods for the persistent fields as fol-
lows:

public abstract String getld();
public abstract void setld(String id);

public abstract String getNane();
public abstract void setNanme(String nane);

public abstract String getPosition();
public abstract void setPosition(String position);

public abstract Double getSalary();
public abstract void setSal ary(Doubl e sal ary);

The IDE generates each of these getter and setter methods based on the informa-
tion it finds in the database. The name of an access method begins with get or
set , followed by the capitalized name of the persistent or relationship field. For
example, the accessor methods for the sal ary field are get Sal ary and set Sal -
ary. Thisnaming convention is similar to that of JavaBeans components.

Access Methods for Relationship Fields

In the Rost er module, a player can belong to multiple teams, so a Pl ayer Bean
instance may be related to many TeanBean instances. To specify this relation-
ship, the deployment descriptor of Pl ayer Bean defines a relationship field
named t eans.

The IDE generates the names of CMP fields and relationship fields based solely
on the names of the columns it finds in the database. You can give these fields
better names by editing the ej b-j ar. xm deployment descriptor.

1. Inthe Projects window, expand the Configuration Files node for the Roster
project and double-click ej b-j ar. xni .

2. In the top of the visual editor, click CMP Relationships. The table lists all
of the CMP relationships for the EJB module.

3. Select the TeanPl ayer row in the table and click Edit. The information on
the | eft of the dialog box defines the PI ayer Bean side of the relationship,
while the information on the right describes the TeanBean side of therela
tionship. The multiplicity is set to Many To Many because a team has
many players and a player can belong to more than one team.

ENTITY BEAN CLASS

Under the Pl ayer | Drole, change the value of the Field Name setting from
t eam d to t eans. Under the Teant D role, change the Field Name setting
from pl ayer1d topl ayers. Then click OK.

4. Inthe TeanBean- LeagueBean CMP relationship, change the field namefor
the TeanBean roleto | eague and the field name for the Leaguel Drole to
t eans.
Notice that the access methods in the enterprise beans are automatically updated
to use the new field names. For example, in the Pl ayer Bean class, the access
methods for thet eans relationship field are as follows:

public abstract Collection getTeans();
public abstract void setTeans(Collection teans);

Finder and Select M ethods

Finder and select methods use EJB QL queries to return objects and state infor-
mation of entity beans using container-managed persistence.

A select method is similar to afinder method in the following ways:
« A select method can return alocal or remote interface (or a collection of
interfaces).
» A select method queries a database.
» The deployment descriptor specifiesan EJB QL query for aselect method.
» The entity bean class does not implement the select method.

However, a select method differs significantly from afinder method:

» A select method can return a persistent field (or a collection thereof) of a
related entity bean. A finder method can return only alocal or remoteinter-
face (or a collection of interfaces).

» Becauseit is not exposed in any of the local or remote interfaces, a select
method cannot be invoked by a client. It can be invoked only by the meth-
ods implemented within the entity bean class. A select method is usually
invoked by either a business or a home method.

» A select method is defined in the entity bean class. For bean-managed per-
sistence, a finder method is defined in the entity bean class, but for con-
tainer-managed persistenceit is not.

The IDE automatically generated finder methods for each of your CMP fields
when it generated them from the database. In order to run more sophisticated

217

218

CONTAINER-MANAGED PERSISTENCE EXAMPLES

gueries on the database, you have to add some additional finder methods to the
Pl ayer Bean entity bean.

1. In the Projects window, expand the Configuration Files node and double-
click ej b-j ar. xnl .

2. Expand the PlayerEB section and the CMP Finder Methods section and

click Add.

3. Usethe dialog box to add the finder methods in the following table:

Table 82 Additional finder methods for PlayerBean entity bean

and ?2

Name Cardinality EJBQL Parameters
findAll Many sel ect object(p) from none

Pl ayer p

sel ect distinct object(p)
findByCity Many from Player p, String city

in (p.teanms) as t

where t.city = ?1

sel ect distinct object(pl)

from Player pl, Player p2
findByHigherSalary | Many where pl.salary > p2.sal- String nane

ary and

p2. namre = ?1

fsel ec:DI di stinct object(p) t eam League
findByL eague Many .rom ayer p, Local

in (p.teans) as t | eague

where t. |l eague = ?1

sel ect distinct object(p) String
I\llr;l(ill?;yPostlonAnd- Many :‘N:]om Player p - 21 and posi tion,

ere p.position = ?1 an String nane

p. nane = ?2

sel ect distinct object(p)
i from Pl ayer p doubl e | ow,
findBySalaryR: M .
IndsysaaryRenge ay where p.salary between ?1 | double high

ENTITY BEAN CLASS

Table8-2 Additional finder methods for PlayerBean entity bean

where p.teans is enpty

Name Cardinality | EJBQL Parameters
sel ect distinct object(p)
: from Pl ayer p, String
findBySport Man
ySp Y in (p.teams) as t sport
where t. | eague.sport = ?1
sel ect distinct object(p) String
from Pl ayer p par i,
; where p.nane = ?1 String
findByTest Many par e,
String
par n8
sel ect object(p) from
fi ndNot OnTeam | Many Pl ayer p none

You also have to code your bean’s select methods.

1. Inthe PlayerEB section of theej b-j ar. xn editor, expand the CMP Select
Methods section and click Add.

2. Usethe Add Select Method dialog box to add the select methodsin thefol-

lowing table:

Table 8-3 Select methods for the PlayerBean entity bean

Name Return Type EJBQL Parameters
sel ect distinct
; : t. | eague
eibSelectleagues | 1 2Va- ut! L.C ot romPl ayer p, in | t€aM Pl ayer Local
ol l ection pl ayer
(p.teans) as t
where p = ?1
select distinct
ibSelectSports java.util.C tleague.sport _ t eam Pl ayer Local
4 ol I ection from Payer p, in ol ayer
(p.teams) ast
wherep =71

219

220

CONTAINER-MANAGED PERSISTENCE EXAMPLES

The signature for a select method must follow these rules:

* The prefix of the method name must be ej bSel ect .

» The access control modifier must be publ i c.

» The method must be declared as abst r act .

* Thethrows clause must includethej avax. ej b. Fi nder Excepti on.

Helper Classes

The enterprise beans in the Roster EJB module depend on a few helper classes.
You have to add these classes to the EJB module before you continue coding the
enterprise beans.

1. Copy the <INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr os-
ter/Roster/src/javalutil directorytothesrc/java directory of your
Roster project.

2. In the Projects window, expand the Source Packages node for the Roster
project. Theuti | package should appear under the node.

Business M ethods

Because clients cannot invoke select methods, the Pl ayer Bean class wraps them
in the get Leagues and get Spor t s business methods.

Note: You can quickly copy business methodsto an enterprise bean by copying and
pasting the methods into your bean class, then right-clicking the method name in
the Source Editor and choosing EJB Methods—Add to Local Interface. When you
are done, press Alt-Shift-F to generate any missing import statements.

1. In the Source Editor, right-click anywhere in the body of the Pl ayer Bean
class and choose EJB Methods—Add Business Method.

2. In the Name field, type getLeagues. In the Return Type combo box, type
Collection.

3. In the Exceptions tab, use the Add button to add a FinderException.

4. Click OK to generate the finder method in both the bean class and the local
business interface.

5. Edit the get Leagues method as follows:

ENTITY BEAN CLASS 221

public Collection getlLeagues() throws Fi nderException {

Pl ayer Local player =
(Pl ayer Local) cont ext . get EJBLocal Obj ect () ;
return ej bSel ect Leagues(pl ayer);

}
. Repeat steps 1-5 to enter the following business method:
public Collection getSports() throws FinderException {

Pl ayer Local player =
(team Pl ayer Local) cont ext . get EJBLocal Obj ect () ;
return ej bSel ect Sports(pl ayer);
}

. You also have to add a few business methods that manage the contents of
each entity bean. Add the following business methods to TeanBean. j ava:

public void addPl ayer (Pl ayerLocal player) {
Debug. pri nt (" TeanBean addPl ayer");
try {
Col | ection players = getPl ayers();
pl ayers. add(pl ayer);
} catch (Exception ex) {
t hr ow new EJBExcepti on(ex. get Message());
}
}

public void dropPl ayer (Pl ayerLocal player) {
Debug. pri nt (" TeanBean dr opPl ayer");
try {
Col l ection players = getPlayers();
pl ayers. renove(pl ayer);
} catch (Exception ex) {
t hr ow new EJBExcepti on(ex. get Message());

}
}

public ArraylList getCopyOf Pl ayers() ({
Debug. pri nt (" TeanBean get CopyCf Pl ayers");
ArraylList playerList = new ArrayList();
Col I ection players = getPlayers();
Iterator i = players.iterator();
while (i.hasNext()) {
Pl ayer Local player = (PlayerLocal) i.next();
Pl ayerDetails details =
new Pl ayerDetail s(player.getld(), pl ayer. get Name(),
pl ayer. getPosition(), 0.0);
pl ayer Li st. add(details);

222

CONTAINER-MANAGED PERSISTENCE EXAMPLES

}

return playerList;
}
8. Press Alt-Shift-F to generate the following import statements:

import java.util.ArraylList;
import java.util.Collection;
inmport java.util.lterator;

i mport util.Debug;

inmport util.PlayerDetails;

9. Add the following business methods to LeagueBean. j ava:

public void addTean(team TeanlLocal team {
Debug. pri nt (" TeanBean addTeant);
try {
Col l ection teans = get Teans();
teans. add(team;
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());
}
}

public void dropTean(team TeanlLocal team {
Debug. pri nt (" TeanBean dropTeani);
try {
Col l ection teans = get Teans();
teans. renove(tean);
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());
}
}

10.Press Alt-Shift-F to generate the following import statements:

import java.util.Collection;
i mport util.Debug;

Note: Since you used simple names in the business method declarations, you also
need to create import statements in the local business interfaces for the TeanBean
and Pl ayer Bean entity beans. You can quickly open the local business interface
by Ctrl-clicking its name in the Source Editor. For example, go to the class declara-
tion of Pl ayer Bean. j ava, hold down the Ctrl key, and click Pl ayer Local -
Busi ness. Theclassopensin the Source Editor. Then press Alt-Shift-F to generate
the import statements.

REFACTORING ENTITY BEAN METHODS 223

Entity Bean Methods

Because the container handles persistence, the life-cycle methodsin the Pl ayer -
Bean class are nearly empty.

The ej bCr eat e method is generated for you by the IDE. It initializes the bean
instance by assigning the input arguments to the persistent fields. At the end of
the transaction that contains the create cal, the container inserts a row into the
database. Here is the source code for the ej bCr eat e method:

public String ejbCreate (String id, String name,

}

String position, double salary) throws CreateException {

set Pl ayerld(id);

set Nane(nane) ;

set Posi tion(position);
set Sal ary(sal ary);
return null;

The ej bPost Cr eat e method returns voi d, and it has the same input parameters
asthe ej bCr eat e method. If you want to set a relationship field to initiaize the
bean instance, you should do so in the ej bPost O eat e method. You cannot set a
relationship field in the ej bCr eat e method.

Except for a debug statement, the ej bRenove method in the Pl ayer Bean classis
empty. The container invokes ej bRenove before removing the entity object.

The container automatically synchronizes the state of the entity bean with the
database. After the container loads the bean’s state from the database, it invokes
the ej bLoad method. In like manner, before storing the state in the database, the
container invokes the ej bSt or e method.

Refactoring Entity Bean Methods

Refactoring is the process of making application-wide changes to your code
without breaking the application’s functionality. For example, the TeanBean
enterprise bean’s ej bCr eat e method takes four parameters, including aLeague-
Local |eaguel d object. Change the method signature to remove the Leaguelo-
cal |eaguel d object from thelist of parameters.

1. Intheej bCr eat e method, delete the following lines:

if (leagueld == null) {
t hr ow new j avax. ej b. Creat eExcepti on(" The field

224

CONTAINER-MANAGED PERSISTENCE EXAMPLES

\"l eagueld\" must not be null");

}

. Inthe ej bPost Cr eat e method, delete the following line:

set Leaguel d(| eaguel d) ;

. Right-click the method name for ejbCreate and choose Refac-

tor—Change Method Parameters. Click Next, select | eaguel d, and click
Remove. Then click Next to preview the changesthat will be made to your
code. Notice that the refactoring will change the method signature of both
the ej bar eat e method in the bean class and the creat e method in the
home interface.

4. In the Refactoring window, click Do Refactoring.

L ocal Home I nterface

The local home interface defines the cr eat e, finder, and home methods that can
be invoked by local clients.

The syntax rulesfor acr eat e method follow:

The name must begin with cr eat e.

It must have the same number and types of arguments asits matching ej b-
Cr eat e method in the entity bean class.

It must return the local interface type of the entity bean.

The t hr ows clause must include the exceptions specified by the t hr ows
clause of the corresponding ej bCr eat e method.

Thet hrows clause must contain thej avax. ej b. Cr eat eExcepti on.

These rules apply for afinder method:

The name must begin with f i nd.

Thereturn type must be the entity bean’slocal interfacetype or acollection
of those types.

Thet hr ows clause must contain thej avax. ej b. Fi nder Excepti on.
Thefi ndByPri mar yKey method must be defined.

An excerpt of the Pl ayer Local Horre interface follows.

package team

import java.util.*;
i mport javax.ejb.*;

LOCAL INTERFACE

public interface PlayerLocal Home extends EJBLocal Hone {

public PlayerLocal create (String id, String nane,
String position, Double salary)
t hrows CreateException;

public PlayerLocal findByPrimaryKey (String key)
t hrows Fi nder Excepti on;

public Collection findByPosition(String position)
t hrows Fi nder Excepti on;

public Collection findByLeague(LeaguelLocal | eague)
t hrows Fi nder Excepti on;

L ocal Interface

This interface defines the business and access methods that a local client can
invoke. When you create enterprise beans in the IDE, the business method signa-
tures are automatically generated to aLocal Busi ness Or Renot eBusi ness inter-
face that is extended by the bean interface and implemented by the bean class.
The advantage of this approach isthat it lets you separate the businesslogic from
implementation logic, and that it lets you check at compile-time that your bean
implements the given interfaces.

The local interface is therefore almost empty:
package team
i mport javax.ejb.*;

public interface PlayerLocal extends EJBLocal Object,
Pl ayer Local Busi ness {

}

The Pl ayer Bean class implements two business methods. get Leagues and
get Sport s. It also defines several get and set access methods for the persistent
and relationship fields. The IDE automatically adds both the set and get methods

226

CONTAINER-MANAGED PERSISTENCE EXAMPLES

for the fields to the local business interface. An excerpt of the local business
method is as follows:

package team

import java.util.Collection;
i mport javax.ejb. Fi nder Excepti on;

public interface PlayerLocal Busi ness {

public abstract String getld();

public abstract String getNane();

public abstract void setNanme(String nane);
public abstract String getPosition();

Col | ection getlLeagues() throws FinderException;
Col I ection getSports() throws Finder Exception;

Creating the Roster Bean Session Bean

You should never directly access entity beans from a client. Instead, clients
should access entity beans through the business methods of a a facade session
bean. In our example, the Rost er Bean session bean performs this purpose. The
source code for the components is in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er directory.

1. Inthe Projectswindow, right-click the Roster node and choose New— Ses-
sion Bean. Enter Rost er for the EJB Name, r ost er for the Package Name,
and set the bean to generate both remote and local interfaces. Then click
Finish.

2. Right-click in the body of the Rost er Bean class and choose Enterprise
Resources—Call Enterprise Bean. Select LeagueEB and click OK. Repeat
this step to generate lookup code for PlayerEB and TeamEB.

3. Add the following variable declarations to the class:

private Pl ayerLocal Hone pl ayerHone = null;
private TeanlLocal Home teantHone = null;
private LeaguelLocal Hone | eagueHone = nul | ;

CREATING THE ROSTERBEAN SESSION BEAN 227

4. Changetheej bCreat e, ej bActi vat e, and ej bPassi vat e methods to get
and release bean references. The ej bAct i vat e and ej bPassi vat e meth-
ods are hiddeninthe EJB I nfrastructure nethods codefold.

public void ejbCreate() {
Debug. print ("RosterBean ej bCreate");
pl ayer Home = | ookupPl ayer Bean();
teamHonme = | ookupTeanBean();
| eagueHome = | ookupLeagueBean();

}

public void ejbActivate() {
Debug. print ("RosterBean ej bCreate");
pl ayer Home = | ookupPl ayer Bean();
teamHonme = | ookupTeanBean();
| eagueHome = | ookupLeagueBean();

}

public void ejbPassivate() {
pl ayer Home = nul | ;
teamHonme = nul | ;
| eagueHone = nul | ;

}

5. Create the business methods for accessing the entity beans. You can copy
the business methods from the RosterBean class in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er/ Ros-
ter/src/java directory. The business methods start with t est Fi nder on
line 114 and end with copyPl ayer sToDet ai | s on line 535. You must also
overwrite your project’s Rost er Renot eBusi ness interface with the con-
tents of the Rost er Renot eBusi ness in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er/ Ros-
ter/src/java.

6. Select Rost er Bean. j ava tab in the Source Editor and press Alt-Shift-F to
generate the following import statements:

i mport java.util.Arraylist;
i mport java.util.Collection;
import java.util.lterator;

i mport javax.ejb.*;

i mport team Leaguelocal ;

i mport team LeaguelLocal Hone;
i mport team Pl ayer Local ;

i mport team Pl ayer Local Hone;
i nport team Teanlocal ;

i mport team Teanlocal Hone;

i mport util. Debug;

i mport util.LeagueDetails;

228 CONTAINER-MANAGED PERSISTENCE EXAMPLES

import util.PlayerDetails;
import util.TeanDetails;

M ethod Invocationsin the Roster Module

To show how the various components interact, this section describes the
sequence of method invocations that occur for particular functions.

The source code for the RosterClient project is in the
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnprost er directory. When you
open the project, you have to resolve the references to libraries on the project’s

classpath.

1. Choose File—»>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er / , select the Ros-
terd i ent directory, and choose Open Project.

2. The project needs to know the location of some JAR files on its classpath
and the Roster project. Right-click the RosterClient project and choose
Resolve Reference Problems. Select the “Roster” project coul d not
be found nmessage and click Resolve. In the file chooser, select either the
completed Roster project in <INSTALL>/ | 2eet ut ori al 14/ exam
pl es/ ej b/ cnprost er/ or the project you created and click OK.

3. Select the“appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1'i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j 2ee. j ar. Click Close.

Creating a Player

1. Roster Client

The Rost erd i ent invokes the cr eat ePl ayer business method of the Rost er -

Bean session bean to create a new player. In the following line of code, the type
of thenyRost er object iSRost er, the remote interface of Rost er Bean. The argu-
ment of the cr eat ePl ayer method is a Pl ayer Det ai | s object, which encapsu-
lates information about a particular player.

myRost er. creat ePl ayer (new Pl ayerDetail s("P1", "Phil Jones",
"goal keeper", 100.00));

CREATING A PLAYER 229

2. Roster Bean

The createPl ayer method of the Rost er Bean session bean creates a new
instance of the Pl ayer Bean entity bean. Because the access of Pl ayer Bean is
local, the cr eat e method is defined in the local home interface, Pl ayer Local -
Honme. The type of the pl ayer Home object is Pl ayer Local Hone. Here is the
source code for the cr eat ePl ayer method:

public void createPl ayer (Pl ayerDetails details) {

try {
Pl ayer Local player = playerHone. create(details.getld(),

details.getNane(), details.getPosition(),
new Doubl e(details.getSalary()));
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());
}
}

3. Player Bean

The ej bCreat e method assigns the input arguments to the bean’'s persistent
fields by calling the set access methods. At the end of the transaction that con-
tains the create call, the container saves the persistent fields in the database by
issuing an SQL | NSERT statement. The code for the ej bCr eat e method follows.

public String ejbCreate (String id, String name,
String position, Double salary) throws CreateException {

setld(id);

set Nane(nane) ;

set Posi tion(position);
set Sal ary(sal ary);
return null;

230

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Adding a Player to a Team

1. Roster Client

TheRosterd i ent callstheaddPl ayer business method of the Rost er Bean ses-
sion bean to add player P1 to team T1. The P1 and T1 parameters are the primary
keys of the PI ayer Bean and TeanBean instances, respectively.

nyRost er . addPl ayer ("P1", "T1");

2. Roster Bean

The addPl ayer method performs two steps. First, it callsfi ndByPri mar yKey to
locate the Pl ayerBean and TeamBean instances. Second, it invokes the
addPl ayer business method of the TeanBean entity bean. Here is the source
code for the addPl ayer method of the Rost er Bean session bean:

public void addPl ayer(String playerld, String teamd) {

try {
TeanmLocal team = teantHone. fi ndByPri maryKey(team d);

Pl ayer Local player =
pl ayer Hore. fi ndByPri mar yKey(pl ayerl|d);
t eam addPl ayer (pl ayer);
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());
}
}

3. TeamBean

The TeanBean entity bean has arelationship field named pl ayers, aCol | ecti on
that represents the players that belong to the team. The access methods for the
pl ayers relationship field are as follows:

public abstract Collection getPlayers();
public abstract void setPlayers(Collection players);

The addPl ayer method of TeanBean invokes the get Pl ayer s access method to
fetch the col I ection of related Pl ayer Local objects. Next, the addPl ayer

REMOVING A PLAYER 231

method invokes the add method of the Col | ect i on interface. Here is the source
code for the addPl ayer method:

public void addPl ayer (Pl ayerLocal player) {
try {
Col I ection players = getPlayers();
pl ayers. add(pl ayer);
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());
}
}

Removing a Player

1. Roster Client

To remove player P4, the client would invoke the r enovePl ayer method of the
Rost er Bean Session bean:

nyRost er. renovePl ayer ("P4");

2. Roster Bean

TherenmovePl ayer method locates the Pl ayer Bean instance by calling f i ndBy-
Pri mar yKey and then invokes the r enove method on the instance. This invoca
tion signals the container to delete the row in the database that correspondsto the
Pl ayer Bean instance. The container also removes the item for this instance from
the pl ayer s relationship field in the TeanBean entity bean. By this removal, the
container automatically updates the TeanBean- Pl ayer Bean relationship. Hereis
ther emovePl ayer method of the Rost er Bean session bean:

public void renovePl ayer(String playerld) {
try {
Pl ayer Local player =
pl ayer Hone. fi ndByPri mar yKey(pl ayer|d);
pl ayer.remove();
} catch (Exception ex) {
t hr ow new EJBExcepti on(ex. get Message());
}
}

232

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Dropping a Player from a Team

1. Roster Client

To drop player P2 from team T1, the client would call the dr opPI ayer method of
the Rost er Bean session bean:

myRost er. dropPl ayer ("P2", "T1");

2. Roster Bean

The dr opPl ayer method retrieves the Pl ayer Bean and TeanBean instances by
calling their fi ndByPri mar yKey methods. Next, it invokesthe dr opPl ayer busi-
ness method of the TeanBean entity bean. The dr opPl ayer method of the Ros-
t er Bean session bean follows:

public void dropPlayer(String playerld, String teamd) {

try {
Pl ayer Local player =
pl ayer Hone. fi ndByPri mar yKey(pl ayer|d);
TeanLocal team = teantone. fi ndByPri maryKey(teamn d);
t eam dr opPl ayer (pl ayer);
} catch (Exception ex) {
t hr ow new EJBExcepti on(ex. get Message());

}
}

3. TeamBean

The dr opPl ayer method updates the TeanBean- Pl ayer Bean relationship. First,
the method retrieves the Col | ect i on of Pl ayer Local objects that correspond to
the pl ayer s relationship field. Next, it drops the target pl ayer by calling the
remove method of the Col | ecti on interface. Here is the dr opPl ayer method of
the TeanBean entity bean:

public void dropPl ayer (Pl ayer Local player) {

try {
Col | ection players = getPlayers();

pl ayers. renove(pl ayer);

GETTING THE PLAYERS OF A TEAM

} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());

}
}

Getting the Playersof a Team

1. Roster Client

The client can fetch ateam’s players by calling the get Pl ayer sof Team method
of the Rost er Bean session bean. This method returns an ArrayLi st of Pl ayer -
Det ai | s objects. A Pl ayerDetai |l object contains four variables—pl ayer | d,
nane, position, and sal ary—which are copies of the Pl ayer Bean persistent
fields. The Rost er d i ent callstheget Pl ayer s Teammethod as follows:

pl ayerLi st = nyRoster.getPlayersCO Team("T2");

2. Roster Bean

The get Pl ayer sO Team method of the Rost er Bean session bean locates the
TeanLocal oObject of the target team by invoking the findByPri maryKey
method. Next, the get Pl ayer sOf Team method calls the get Pl ayer s method of
the TeanBean entity bean. Here is the source code for the get Pl ayer sOf Team
method:

public ArraylList getPlayersO Tean(String team d) {

Col l ection players = null;

try {
TeanlLocal team = teantHone. findByPri naryKey(teanl d);

pl ayers = team get Pl ayers();
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());

}

return copyPl ayersToDetail s(pl ayers);

234

CONTAINER-MANAGED PERSISTENCE EXAMPLES

The get Pl ayer sOf Team method returns the Arraylist of PlayerDetails
objects that is generated by the copyPl ayer sToDet ai | s method:

private ArraylList copyPl ayersToDetail s(Collection players) {

ArraylList detailsList = new ArrayList();
Iterator i = players.iterator();

while (i.hasNext()) {
Pl ayer Local player = (PlayerLocal) i.next();
Pl ayerDetails details =
new Pl ayer Det ai | s(pl ayer.getld(),
pl ayer. get Name(), player.getPosition(),
pl ayer. get Sal ary() . doubl eVal ue());
detail sLi st.add(details);

}

return detail sList;

3. TeamBean

The get Pl ayer s method of the TeanBean entity bean is an access method of the
pl ayers relationship field:

public abstract Collection getPlayers();

This method is exposed to local clients because it is defined in the local inter-
face, TeanlLocal :

public Collection getPlayers();

When invoked by alocal client, a get access method returns a reference to the
relationship field. If the local client alters the object returned by a get access
method, it also alters the value of the relationship field inside the entity bean. For
example, alocal client of the TeanBean entity bean could drop a player from a
team asfollows:

TeanLocal team = teantHone. findByPri maryKey(tean d);
Col I ection players = team get Pl ayers();
pl ayers. renove(pl ayer);

If you want to prevent alocal client from modifying a relationship field in this
manner, you should take the approach described in the next section.

GETTING A COPY OF A TEAM'S PLAYERS

Getting a Copy of a Team’s Players

In contrast to the methods discussed in the preceding section, the methods in this
section demonstrate the following techniques:

* Filtering the information passed back to the remote client
» Preventing the local client from directly modifying arelationship field

1. Roster Client

If you wanted to hide the salary of a player from a remote client, you would
require the client to call the get Pl ayer sO TeanCopy method of the Rost er Bean
session bean. Like the get Pl ayer sOf Teammethod, the get Pl ayer sOf TeanCopy
method returns an ArraylLi st oOf Pl ayer Det ai | s objects. However, the objects
returned by get Pl ayer sOf TeanCopy are different: their sal ary variables have
been set to zero. TheRost er d i ent callstheget Pl ayer sO TeanCopy method as
follows:

pl ayerLi st = nyRoster. get Pl ayer sOf TeanCopy (" T5");

2. Roster Bean

Unlike the get Pl ayer sCf Team method, the get Pl ayer sOf TeanCopy method
does not invoke the get Pl ayer s access method that is exposed in the TeanLocal

interface. Instead, the get Pl ayer sOf TeanCopy method retrieves a copy of the
player information by invoking the get CopyCf Pl ayer s business method that is
defined in the TeamLocal interface. As a result, the get Pl ayer sOf TeanCopy
method cannot modify the pl ayer s relationship field of TeanBean. Here is the
source code for the get Pl ayer sCOf TeanCopy method of Rost er Bean:

public ArraylList getPl ayersO TeanCopy(String team d) {
ArraylLi st playersList = null;

try {
TeanlLocal team = teanHone. findByPri naryKey(teanl d);

pl ayersLi st = team get CopyOf Pl ayers();
} catch (Exception ex) {
t hrow new EJBExcepti on(ex. get Message());

235

236

CONTAINER-MANAGED PERSISTENCE EXAMPLES

}

return playersList;

}

3. TeamBean

The get CopyOf Pl ayer s method of TeanBean returns an ArraylLi st of Pl ayer -

Det ai | s objects. To create this Ar r ayLi st , the method iterates through the Col -

I ection of related Pl ayer Local objects and copies information to the variables
of the Pl ayer Det ai | s objects. The method copies the values of Pl ayer Bean
persistent fields—except for the sal ary field, which it setsto zero. Asaresult, a
player’s salary is hidden from a client that invokes the get Pl ayer sOf TeanCopy
method. The source code for the get Copyr Pl ayer s method of TeanBean fol-
lows.

public ArrayLi st getCopyOf Players() {

ArraylLi st playerList = new ArrayList();
Col I ection players = getPl ayers();

Iterator i = players.iterator();
while (i.hasNext()) {
Pl ayer Local player = (PlayerLocal) i.next();
Pl ayerDetails details =
new Pl ayer Det ai | s(pl ayer. get Pl ayerld(),
pl ayer. get Nane(), player.getPosition(), 0.00);
pl ayerLi st. add(details);

}

return playerlList;

Finding the Players by Position

1. Roster Client

The client starts the procedure by invoking the get Pl ayer sByPosi ti on method
of the Rost er Bean session bean:

pl ayerLi st = nyRoster. getPl ayersByPosition("defender");

FINDING THE PLAYERS BY POSITION 237

2. Roster Bean

The get Pl ayer sByPosi ti on method retrieves the pl ayer s list by invoking the
fi ndByPosi t i on method of the Pl ayer Bean entity bean:

public ArraylList getPl ayersByPosition(String position) {
Col l ection players = null;

try {

pl ayers = pl ayer Hone. fi ndByPosi ti on(position);
} catch (Exception ex) {

t hrow new EJBExcepti on(ex. get Message());

}

return copyPl ayersToDetail s(pl ayers);

}

3. Player Bean

The Pl ayer Local Hone interface definesthe f i ndByPosi ti on method:

public Collection findByPosition(String position)
throws Fi nder Excepti on;

Because the Pl ayer Bean entity bean uses container-managed persistence, the
entity bean class (Pl ayer Bean) does not implement its finder methods. To spec-
ify the queries associated with the finder methods, EJB QL queries must be
defined in the bean’s deployment descriptor. For example, the fi ndByPosi ti on
method has this EJB QL query:

SELECT DI STI NCT OBJECT(p) FROM Pl ayer p
WHERE p. position = ?1

At runtime, when the container invokes the fi ndByPosi ti on method, it will
execute the corresponding SQL SELECT statement.

For details about configuring the EJB QL in the deployment descriptors, see
Finder and Select Methods.

238

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Getting the Sports of a Player

1. Roster Client

The client invokes the get Sport sOf Pl ayer method of the Rost er Bean session
bean:

sportList = nyRoster.getSportsCOf Pl ayer (" P28");

2. Roster Bean

The get Sport sO Pl ayer method returns an ArrayLi st of String objects that
represent the sports of the specified player. It constructs the ArrayLi st from a
Col | ection returned by the get Sports business method of the Pl ayer Bean
entity bean. Hereisthe source code for the get Sport sOf Pl ayer method of the
Rost er Bean Session bean:

public ArrayList getSportsOPlayer(String playerld) {

Arrayli st sportsList = new ArrayList();
Col l ection sports = null;

try {
Pl ayer Local player =

pl ayer Home. fi ndByPri mar yKey(pl ayer|d);
sports = player.getSports();
} catch (Exception ex) {
t hr ow new EJBExcepti on(ex. get Message());

}

Iterator i = sports.iterator();
while (i.hasNext()) {
String sport = (String) i.next();
sportsList.add(sport);
}

return sportslList;

3. Player Bean

The get Sport s method is awrapper for the ej bSel ect Spor t s method. Because
the parameter of the ej bSel ect Sports method is of type Pl ayer Local , the

BUILDING AND RUNNING THE ROSTER EXAMPLE

get Sport s method passes along a reference to the entity bean instance. The
Pl ayer Bean class implements the get Spor t s method as follows:

public Collection getSports() throws FinderException {

Pl ayer Local player =
(team Pl ayer Local) cont ext . get EJBLocal Obj ect () ;
return ej bSel ect Sports(pl ayer);

}
The Pl ayer Bean class definesthe ej bSel ect Sport s method:

public abstract Collection ejbSel ectSports(PlayerLocal player)
t hrows Fi nder Excepti on;

The bean’s deployment descriptor specifies the following EJB QL query for the
ej bSel ect Spor t s method:

SELECT DI STINCT t. | eague. sport
FROM Pl ayer p, IN (p.teans) AS't
WHERE p = ?1

Because Pl ayer Bean uses container-managed persistence, when the ej bSe-
I ect Sports method isinvoked the EJB container will execute its corresponding
SQL SELECT statement.

Building and Running the Roster Example

Once you have coded all of the enterprise beans in the Rost er example, you do
not have to configure any more deployment descriptors or server resources. The
IDE configures all of the necessary settings as you create the source code. You
will now build and deploy the module as a stand-alone EJB module, then access
it from the RosterClient project.

The RosterClient project and a completed Roster project are located at
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnproster/.

240

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Building and Deploying the EJB Module

You can build and deploy the module in one action.

1. In the Runtime window, expand the Servers node, right-click the node for
the Sun Java System Application Server, and choose Start/Stop Server. If
the server is stopped, click Start Server in the dialog box.

2. In the Projects window, right-click the Roster project and choose Deploy
Project.

The IDE does all of the following:

1. Compilesthe EJB modul€’s sources and builds the EJB JAR file. You can
view the build output in the project’s bui | d and di st directories in the
Files window.

2. Registers the JIDBC connection pool and datasource on the server.
3. Undeploys the moduleif it is already deployed to the server.
4. Deploys the module to the server.

Running the Client Application

To run the client, follow these steps:

1. If you have not already opened the RosterClient project, choose
File>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er / , select the Ros-
terd i ent directory, and choose Open Project.

2. The project needs to know the location of some JAR files on its classpath
and the Roster project. Right-click the RosterClient project and choose
Resolve Reference Problems. Select the “Roster” project coul d not
be found message and click Resolve. In the file chooser, select either the
completed Roster project in <INSTALL>/ | 2eet ut ori al 14/ exam
pl es/ ej b/ cnprost er/ or the project you created and click OK.

3. Select the“appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1'i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolves the location of j 2ee. j ar. Click Close.

4. If the PointBase database server is not running, choose Tools—PointBase
Database— Start Local PointBase Database.

PRIMARY KEYS FOR CONTAINER-MANAGED PERSISTENCE

5. In the Projects window, right-click the RosterClient project and choose
Run Project.

6. In the Output window, the client displays the following output:

P7 Rebecca Struthers mdfielder 777.0
P6 lan Carlyl e goal keeper 555.0

P9 Jan Wesl ey defender 100.0

P10 Terry Smthson midfielder 100.0
P8 Anne Anderson forward 65.0

T2 Cophers Mant eca
T5 Crows Ol and
Tl Honey Bees Visalia

P2 Alice Smith defender 505.0
P5 Barney Bol d def ender 100.0
P25 Frank Fl etcher defender 399.0
P9 Jan Wesl ey defender 100.0
P22 Jani ce Wl ker defender 857.0

L1 Mountai n Soccer
L2 Val | ey Basket ball

Primary Keysfor Container-M anaged
Persistence

Sometimes you must implement the class and package it along with the entity
bean. For example, if your entity bean requires a composite primary key (which
is made up of multiple fields) or if a primary key field is a Java programming
language primitive type, then you must provide a customized primary key class.

241

242

CONTAINER-MANAGED PERSISTENCE EXAMPLES

ThePrimary Key Class

For container-managed persistence, aprimary key class must meet the following
requirements:

The access control modifier of the class must be publ i c.
All fields must be declared as publ i c.

The fields must be a subset of the bean’s persistent fields.
The class must have a public default constructor.

The class must implement the hashCode() and equal s(bj ect ot her)
methods.

The class must be serializable.

In the following example, the Pur chaseOr der Key class implements a composite
key for the PurchaseOrderBean entity bean. The key is composed of two
fields—pr oduct Model and vendor I d—whose names must match two of the per-
sistent fields in the entity bean class.

public class PurchaseOrderKey i npl ements java.io. Serializable {

}

public String product Model ;
public String vendorld;

publ i c PurchaseOrderKey() { };
publ i c bool ean equal s(Obj ect other) {

i f (other instanceof PurchaseOr derKey) ({
return (product Model . equal s(
((PurchaseOr der Key) ot her) . product Model) &&
vendor | d. equal s(
((PurchaseOr der Key) ot her) . vendor1d));

}

return fal se;

}

public int hashCode() {

return product Mbdel . concat (vendor1d). hashCode();
}

THE PRIMARY KEY CLASS

Primary Keysin the Entity Bean Class

In the Pur chaseOr der Bean class, the following access methods define the per-
sistent fields (vendor | d and pr oduct Mbdel) that make up the primary key:

public abstract String getVendorld();
public abstract void setVendorld(String id);

public abstract String getProduct Model ();
public abstract void setProductMdel (String nane);

The next code sample shows the ej bCr eat e method of the Pur chaseOr der Bean
class. Thereturn type of the ej bCr eat e method is the primary key, but the return
valueisnul | . Although it is not required, the nul I return value is recommended
for container-managed persistence. This approach saves overhead because the
bean does not have to instantiate the primary key class for the return value.

publ i c PurchaseOrderKey ejbCreate (String vendorld,
String product Model, String product Nane)
throws CreateException {

set Vendor I d(vendor | d);
set Product Model (product Model) ;
set Product Name(pr oduct Nane) ;

return null;

Generating Primary Key Values

For some entity beans, the value of a primary key has a meaning for the business
entity. For example, in an entity bean that represents a player on a sports team,
the primary key might be the player’s driver's license number. But for other
beans, the key’s valueis arbitrary, provided that it's unique. With container-man-
aged persistence, these key values can be generated automatically by the EJB
container. To take advantage of this feature, an entity bean must meet these
requirements:

* In the deployment descriptor, the primary key class must be defined as a
j ava. | ang. Qbj ect . The primary key field is not specified.

* In the home interface, the argument of the fi ndByPri mar yKey method
must be aj ava. | ang. Ghj ect.

243

CONTAINER-MANAGED PERSISTENCE EXAMPLES

* Inthe entity bean class, the return type of the ej bCr eat e method must be
ajava.l ang. Obj ect ..

In these entity beans, the primary key values arein an internal field that only the
EJB container can access. You cannot associate the primary key with a persistent
field or any other instance variable. However, you can fetch the bean’s primary
key by invoking the get Pri mar yKey method on the bean reference, and you can
locate the bean by invoking itsfi ndByPri mar yKey method.

Advanced CMP Topics: The Order
Example

The o der application is an advanced CMP example. It contains entity beans
that have self-referentia relationships, one-to-one relationships, unidirectional
relationships, unknown primary keys, primitive primary key types, and compos-
ite primary keys.

To open the project, choose File—>Open Project (Ctrl-Shift-O). In the file
chooser, go to <INSTALL>/j2eetutorial 14/examples/ejb/cmporder/, select the Order direc-
tory, and choose Open Project.

Structure of Order

O der isasimpleinventory and ordering application for maintaining a catalog of
parts and placing an itemized order of those parts. It has entity beans that repre-
sent parts, vendors, orders, and line items. These entity beans are accessed using
a stateful session bean that holds the business logic of the application. A simple
command-line client adds data to the entity beans, manipulates the data, and dis-
plays data from the catal og.

The information contained in an order can be divided into different elements.
What is the order number? What parts are included in the order? What parts
make up that part? Who makes the part? What are the specifications for the part?
Are there any schematics for the part? o der isasimplified version of an order-
ing system that has all these elements.

O der consists of two modules. o der, an enterprise bean JAR file containing
the entity beans, the stateful session bean that accesses the data in the entity
beans, the support classes, and the database schema file; and order d i ent , the

BEAN RELATIONSHIPS IN ORDER

application client that populates the entity beans with data and manipulates the
data, displaying the resultsin aterminal.

Figure 8-3 shows Or der 's database tables.

OrderApp tables !I
PK = Prima

PART
+PART_MUIMEER: YWRCHARTS) - comprind PR

= +REVISION: NUMERIG(Z] -
+DESCRIPTION: WARCHAR255)
+REVISION_DATE: TIMESTAMP
+EOM_PART_NUMBER: WARCHAR(S)

oW =08 REVISION: NUMERIC]

self-referenced
Forelgn Keys

PART_DETAIL
+PART MM EER: WARGH&RE1S] - compund P

+HAEVISION: NUMER]
+3FECIFIGATIONE OB
+ORAWING: LB (10K]

YENDOR

4NENDOIR I INTEGER - PK

+HAME: VARCHARIN] VENDOR_PART

+ADIRESS: VARCHARESS) +¥ENDOR PART HUMBER: BIEINT - PE

+OISCOUNT: wr.qgmcim +OESCRIPTION: VARCHAR[255]

+5HIPMENT_IRFD: YARCHARZSS) +FRICE [MIUBLE PRECISION
+¥ENDOR_I0: INTEGER
+PART_NUMEER: WARCHARIS)
+PART_REVISION: KUMERIC2}

ORDERS
+OADER_ID: INTEGER - PE
+ETATUS: EHERH]
+LAST UFDATE: TIMESTAMP LINEITEM

Fareign Key

LA URTNT SRR | L] +0ROER_ND: INTEGER - compound PK
+5HIPMENT INFE: VARCHARARG] +ITE_I0: MUMERICS) - compound PK
+OINHTITY: KUMERIT3)

+¥ENDDR_PART_WUMBER: BIGINT

Fareign Key overapping PK

Figure 8-3 Database Tablesin Or der

Bean Relationshipsin Order

The o der example application shows how to set up one-to-many and many-to-
many relationships between entity beans. O der demonstrates two additional
types of entity bean relationships (see Figure 8-4): one-to-one and self-referen-
tial relationships.

246 CONTAINER-MANAGED PERSISTENCE EXAMPLES

OrderApp Enterprise
Bean Hulaﬁunshig j

PartBean

partflumber: java.lamg String
revsion; ind

part: ri.lh'l.ll‘l‘ll.ﬂ:l'll'!l'!ﬂnn

drawing: javaioSerializable
spedfication: javalamg String VendorPartBean
wandar: datsragielry.LocalVandor
part: dakarepisiry Lo arl
descriplion: javalkingSiring

OrderBean kit

orclerld: Imtagar

lin javautil.Colleclion

&la 1§ ¥

lastlipdate: joa.uSlDate VendorBean

discount: inf wendorkd: ink

shipmentinfa jmva.lang. Srimg wendorParts: jmea. bl Collzchon
name [ava.lang.Sning
adkiraps: Jam.lang.Skdng
COnkect: |avRENSTINg
phame jevalang. Bl

LineliemBean

ordarid: Imeger

ilemid: ind

quartlily; inl

wrendorPart: datarrgistry.LocalVendorPar
omer: datamgisiry.LocalOrder

Figure 84 Relationships between Entity Beansin Or der

Self-Referential Relationships

A sdf-referential relationship is arelationship between container-managed rela-
tionship fields (CMR) in the same entity bean. Par t Bean has a CMR field bom

Part that has a one-to-many relationship with the CMR field parts, which is
alsoinPart Bean. That is, a part can be made up of many parts, and each of those
parts has exactly one bill-of-material part.

The primary key for Par t Bean is acompound primary key, a combination of the
part Nunber and revi si on fields. It is mapped to the PART_NUMBER and REVI -
Sl ON columnsin the PART table.

PRIMARY KEYS IN ORDER’S ENTITY BEANS

One-to-One Relationships

Par t Bean hasa CMR field, vendor Par t , that has a one-to-one relationship with
Vendor Part Bean’s CMR field part. That is, each part has exactly one vendor
part, and vice versa.

One-to-Many Relationship M apped to Overlapping
Primary and Foreign Keys

O der Bean has a CMR field, Ii nel tens, that has a one-to-many relationship
with Li nel t enBean’s CMR field or der. That is, each order has one or more line
item.

Li nel t emBean uses acompound primary key that is made up of the or der 1 d and
i tem d fields. This compound primary key maps to the ORDER | Dand | TEM | D
columns in the LI NEI TEM database table. ORDER I D is a foreign key to the
CORDER_| D column in the ORDERS table. This means that the ORDER | D column is
mapped twice: once as a primary key field, or der I d; and again as a relationship
field, or der.

Unidirectional Relationships

Li nel t enBean has a CMR field, vendor Par t , that has a unidirectional many-to-
one relationship with Vendor Par t Bean. That is, thereisno CMR field in the tar-
get entity bean in this relationship.

Primary Keysin Order’s Entity Beans

The o der example uses more complicated primary keys than doesRost er .

Unknown Primary Keys

In O der, Vendor Par t Bean uses an unknown primary key. That is, the enterprise
bean does not specify a primary key field, and uses j ava. | ang. Obj ect as the
primary key class.

247

248

CONTAINER-MANAGED PERSISTENCE EXAMPLES

The Local Vendor Par t Hone interface’s f i ndByPri mar ykKey method is defined as
follows:

public Local Vendor Part findByPri maryKey(Obj ect aKey)
t hrows Fi nder Excepti on;

See Generating Primary Key Values (page 243) for more information on unkown
primary keys.

Primitive Type Primary Keys

Vendor Bean uses a primary key that is a Java programming language primitive
type, ani nt . To use aprimitive type as the primary key, you must create awrap-
per class. Vendor Key isthe wrapper class for Vendor Bean.

The wrapper primary key class has the same requirements as described in The
Primary Key Class (page 242). Thisisthe Vendor Key Wrapper class:

package dataregistry;
public final class VendorKey inplenments java.io.Serializable {

public int vendorld;
publi ¢ bool ean equal s(Obj ect other) {

if (this == otherQ) {
return true;

if (!(other® instanceof VendorKey)) {
return fal se;

}
Vendor Key ot her = (Vendor Key) ot her Qb;
return (vendorld == other.vendorld);

}
public int hashCode() {
return vendorld;

}

public String toString() {
return "" + vendorld;

}

}

PRIMARY KEYS IN ORDER’S ENTITY BEANS

Compound Primary Keys

A compound primary key is made up of multiple fields and follows the require-
ments described in The Primary Key Class (page 242). To use a compound pri-
mary key, you must create a wrapper class.

In Order, two entity beans use compound primary keys. PartBean and
Li nel t enBean.

Par t Bean USes the Par t Key wrapper class. Part Bean's primary key is a combi-
nation of the part number and the revision number. Part Key encapsulates this

primary key.

Li nel t emBean USes the Li nel t enKey class. Li nel t emBean’s primary key is a
combination of the order number and the item number. Li nel t enkey encapsu-
lates this primary key. Thisisthe Li nel t enkey compound primary key wrapper
class:

package dat aregi stry;

public final class LineltenKey inplenents
java.io. Serializable {

public Integer orderld;
public int itemd;

publ i ¢ bool ean equal s(Obj ect othero) {
if (this == otherOh) {
return true;
}
if (!(otherOb instanceof LineltenkKey)) {
return fal se;
}

Li neltenkKey other = (LineltenKey) otherQb;
return ((orderld==null ?other.orderld==null:orderld. equals
(other.orderld)) && (itemd == other.itenmld));
}

public int hashCode() {
return ((orderld==null ?0: orderl d. hashCode())
A((int) itemd));
}

public String toString() {
return "" + orderld + "-" + itemd,
}
}

249

250

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Entity Bean Mapped to More Than One
Database Table

Par t Bean’s fields map to more than one database table: PART and PART_DETAI L.
The PART_DETAI L table holds the specification and schematics for the part.

Finder and Selector M ethods

Vendor Bean has two finder methods: fi ndByParti al Nare and fi ndByOr der.
ThefindByParti al Name method searches through the vendor list for matchesto
apartial name. fi ndByOr der finds all vendors for a particular order.

Li nel t enBean has one finder method, fi ndAl | , which finds all line items.
O der Bean has one selector method, ej bSel ect Al |, which returns all orders.

Vendor Part Bean has two selector methods. ej bSel ect AvgPri ce returns the
average price of all parts from a vendor. ej bSel ect Tot al Pri cePer Vendor
returns the price of all the parts from a particular vendor.

Selector methods cannot be accessed outside a bean instance because the selec-
tor methods are not defined in the bean interface. If you are using a selector
method to return data to a caller, the selector method must be called from ahome
or business method. In O der, the Local Vendor Par t Hore. get AvgPri ce method
returns the result of the ej bSel ect AvgPri ce method in Vendor Par t Bean.

The return type of a selector query is usualy defined by the return type of the
ej bSel ect methods. You must specify the return type as Renot e if the method
returns a remote interface or aj ava. util . Col | ecti on of remote interfaces. If
the return type is a local interface or ajava. util. Col | ection of local inter-
faces, set the return type to Local . If the return type is neither a local nor a
remote interface, nor a collection of local or remote interfaces, do not set the
return type. The O der Bean. ej bSel ect Al I method returns a collection of local
interfaces. Vendor Part Bean. ej bSel ect AvgPri ce and Vendor Part Bean. ej b-
Sel ect Tot al Pri cePer Vendor return aDoubl e, SO the return type is set to None.

Using Home M ethods

Home methods are defined in the home interface of a bean and correspond to
methods named ej bHome<METHOD> in the bean class. For example, a method
get Val ue, defined in the Local Exanpl eHone interface, corresponds to the ej b-

CASCADE DELETES IN ORDER

HomeGet Val ue method implemented in Exanpl eBean. The ej bHome<METHOD>
methods are implemented by the bean devel oper.

O der uses three home methods; O der Local Hone. adj ust Di scount, Vendor -
Par t Local Hone. get AvgPri ce, and Vendor Part Local Hore. get Tot al Pri ceP-
er Vendor . Home methods operate on all instances of a bean rather than on any
particular bean instance. That is, home methods cannot access the container-
managed fields and relationships of a bean instance on which the method is
called.

For example, Or der Local Horre. adj ust Di scount s used to increase or decrease
the discount on all orders.

Cascade Deletesin Order

Entity beans that use container-managed relationships often have dependencies
on the existence of the other bean in the relationship. For example, alineitemis
part of an order, and if the order is deleted, then the line item should also be
deleted. Thisis called a cascade delete relationship.

In O der, there are two cascade delete dependencies in the bean relationships. If
the OrderBean to which a LineltenBean is related is deleted, then the
Li nel t enBean should also be deleted. If the Vendor Bean to which a Vendor -
Par t Bean isrelated is deleted, then the Vendor Par t Bean should also be deleted.

BLOB and CLOB Database Typesin Order

The PART_DETAI L table in the database has a column, DRAW NG of type BLOB.
BLOB stands for binary large objects, which are used for storing binary data such
as an image. The DRAW NG column is mapped to the container-managed field
Par t Bean. dr awi ng Of typej ava.io. Seri al i zabl e.

PART_DETAI L also has a column, SPECI FI CATI ON, of type CLOB. CLOB stands for
character large objects, which are used to store string data too large to be stored
in a VARCHAR column. SPECI FI CATI ON is mapped to the container-managed field
Par t Bean. speci fi cati on of typej ava. | ang. Stri ng.

Note: You cannot use a BLOB or CLOB column in the WHERE clause of a finder or
selector EJB QL query.

251

252

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Building and Running the Order Example

In order to run the orderdient example, you have to build and deploy the
O der EJB module and create the database tables.

Building and Deploying the EJB Module

You can build and deploy the module in one action.

1. In the Runtime window, expand the Servers node, right-click the node for
the Sun Java System Application Server, and choose Start/Stop Server. If
the server is stopped, click Start Server in the dialog box.

2. In the Projects window, right-click the Order project and choose Deploy
Project.

The IDE does al of the following:
1. Compilesthe EJB modul€'s sources and builds the EJB JAR file. You can

view the build output in the project’s bui | d and di st directories in the
Files window.

2. Registers the JDBC connection pool and datasource on the server.
3. Undeploysthe moduleif it is already deployed to the server.
4. Deploys the module to the server.

Running the Order Client Example

1. In the IDE, choose Tools—PointBase Database—Start Local PointBase
Database.
2. Create the database tables by running the cr eat e. sql script.

a Make sure that the appsrv.root property in your
<I NSTALL>/ j 2eet ut ori al 14/ exanpl es/ file points to the location of
your local Application Server installation.

b. In aterminal window, go to this directory:
<I NSTALL>/j 2eet ut ori al 14/ exanpl es/ ej b/ or der/

c. Type the following command, which runsthecr eat e. sql script:
asant -buildfile create-db. xni

3. Choose File—>Open Project (Ctrl-Shift-O). In the file chooser, go to
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ order/, select the Order-
cient directory, and choose Open Project.

BUILDING AND RUNNING THE ORDER EXAMPLE 253

4. The project needs to know the location of some JAR files on its classpath
and the Enroller project. Right-click the EnrollerClient project and choose
Resolve Reference Problems. Select the“ Or der” proj ect coul d not be
found message and click Resolve. In the file chooser, select either the
completed Enroller proj ect in
<INSTALL>/ j 2eet ut ori al 14/ exanpl es/ ej b/ enrol l er/ or the project
you created and click OK.

5. Select the“ appserv-rt.jar” file/folder could not be found mes
sage and click Resolve. Navigate to the 1'i b directory in your application
server installation, select appserv-rt.jar, and click OK. The IDE auto-
matically resolvesthe location of j 2ee. j ar. Click Close.

6. Right-click the OrderClient project and choose Run Project. The client
should display the following:

Cost of Bill of Material for PN SDFG ERTY-BN Rev: 7: $241.86
Cost of Order 1111: $664. 68
Cost of Order 4312: $2,011.44

Addi ng 5% di scount

Cost of Order 1111: $627.75

Cost of Order 4312: $1,910.87

Renovi ng 7% di scount

Cost of Order 1111: $679.45

Cost of Order 4312: $2,011.44

Average price of all parts: $117.55
Total price of parts for Vendor 100: $501.06
Ordered |ist of vendors for order 1111
200 Gadget, Inc. Ms. Snmith

100 WdgetCorp M. Jones

Found 6 line itens

Renovi ng Order
Found 3 line itens

Found 1 out of 2 vendors with 'I' in the nane:
Gadget, Inc.

254

CONTAINER-MANAGED PERSISTENCE EXAMPLES

9

A Message-Driven Bean
Example

BECAUSE message-driven beans are based on the Java Message Service
(IMS) technology, to understand the example in this chapter you should be
familiar with basic IMS concepts such as queues and messages.

This chapter describes the source code of a simple message-driven bean exam-
ple. Before proceeding, you should read the basic conceptual information in the
section What |s a Message-Driven Bean? (page 116).

Example Application Overview

The SimpleMessage application has the following components:

* SimpleMessageClient: An application client that sends several messages to a
queue

e SimpleMessageMDB: A message-driven bean that asynchronously receives
and processes the messages that are sent to the queue

Figure 9-1 illustrates the structure of this application. The application client
sends messages to the queue, and the IMS provider (in this case, the Application
Server) delivers the messages to the instances of the message-driven bean, which
then processes the messages.

255

256 A MESSAGE-DRIVEN BEAN EXAMPLE

JZEE
Server

. o
Msgl Mag Cantainer

<

A ¥ MDBE
cu':':.t "-w instances

Sends Dedlivers

Figure9-1 The SimpleMessageClient Application

The source code for this application is in the <INSTALL>/j2estutorial 14/examples/ejb/
simplemessage/ directory.

The SimpleM essageClient Application

The SimpleMessageClient application is a simple Java application that sends mes-
sages to a queue. The application locates the connection factory and queue and
then generates some messages to send to the queue.

Creating the SimpleM essageClient
application

In this example, using the IDE you create the simple Java client application.

1. Choose File—New Project (Ctrl-Shift-N) from the main menu.

2. Select General in the Categories pane and Java Application in the Projects
pane and click Next.

3. Enter SimpleMessageClient as the Project Name, specify the project location,
and click Finish.

The IDE creates a new project called SimpleMessageClient and the main class
opens in the Source Editor. In the Projects window, notice that the main method
is located in the Source Packages node in the simplemessageclient package. To run

CREATING THE SIMPLEMESSAGECLIENT APPLICATION

the SimpleMessageClient project you need to add some libraries to the project
classpath. You can add the libraries in the Projects window

1. Expand the SimpleM essageClient node, right-click the Libraries node and
choose Add JAR/Folder from the contextual menu.

2. Inthe Add JAR/Folder dialog box, locate and add the following JAR files:
* j2eejar
* appserv-rt.jar
* appserv-admin.jar
* imgjmsrajar
With the exception of theimgjmsrajar file, the JAR files can be found in the
lib folder of the local installation of the SIS Application Server. To add the
imgimsrajar file to the classpath, you first need to extract the JAR file from
the imgjmsrarar file, which is located in the img/lib folder of the local SIS
Application Server installation.

3. Click OK.

After adding the libraries to the classpath, add the following field declarations to
the main method in the Source Editor:

Context jndiContext = null;
ConnectionFactory connectionFactory = null;
Connection connection = null;

Session session = null;

Destination destination = null;

M essageProducer messageProducer = null;
TextMessage message = null;

final int NUM_MSGS = 3;

Press Alt-Shift-F to add and fix any import statements. The import statements
should be asfollows:

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Destination;

import javax.jms.JM SException;
import javax.jms.MessageProducer;
import javax.jms.Queue;

import javax.jms.Session;

import javax.jms.TextM essage;
import javax.naming.Context;

import javax.naming.I nitial Context;
import javax.naming.NamingException;

257

258 A MESSAGE-DRIVEN BEAN EXAMPLE

Add the following code to create the new context:

try {
jndiContext = new Initial Context();

} catch (NamingException €) {
System.out.printin("Could not create INDI " + "context: " +
e.toString());
System.exit(1);
}

Add the following code for locating the connection factory and queue:

try {
connectionFactory =

(ConnectionFactory) jndi Context.lookup(
"jms/SimpleM essageDestinati onFactory");
destination =
(Queue) jndiContext.lookup("jms/SimpleM essageBean");
} catch (NamingException €) {
System.out.printin("JNDI lookup failed: " + etoString());
System.exit(1);
}

Add the following code to create the queue connection, session, and sender:

try {
connection = connectionFactory.createConnection();

session = connection.createSession(false, Sesson. AUTO_ACKNOWLEDGE);
messageProducer = session.createProducer(destination);

Finally, add the following code to send several messages to the queue and print a
message to the server log:

message = session.createTextMessage();

for (inti =0; i <NUM_MSGS; i++) {
message.setText("Thisis message " + (i + 1));
System.out.printIn(" Sending message: " +
message.getText());
messageProducer.send(message);
}

System.out.printin("To seeif the bean received the messages,”);
System.out.printin(
" check <install_dir>/domains/domainl/logs/server.log.");
} catch (IMSException €) {
System.out.printin(" Exception occurred: " + eitoString());

THE MESSAGE-DRIVEN BEAN 259

} finally {
if (connection !=null) {

try {
connection.close();

} catch (JIM SException €) {

}

}
System.exit(0);

}

Now that you have created the SimpleMessageClient application, you create the
message-driven bean that listens for the messages the client sent to the queue.

The Message-Driven Bean

When creating the message-driven bean, you first create an EJB module which
contains and manages the context for the bean. You add the message-driven bean
to the EJB the module.

The message-driven bean example requires the following:

* A JMS connection factory resource
* A JMS destination resource
» A physical destination to which the destination resource refers
When you create a message-driven bean, the IDE generates the connection fac-

tory and destination resources and adds them to the module. The physical desti-
nation is generated upon deployment.

Creating the SSimpleM essage EJB M odule

To create the EJB module for the message-driven bean, perform the following
steps:
1. Create anew project by choosing File—New Project.

2. In the New Project wizard, choose Enterprise in the Categories pane and
EJB Modulein the Projects pane and click Next.

3. Enter sSimpleMessage for the Project Name and specify a Project Location.

4. Ensure that the server instance of the SIS Application Server is selected in
the Server combo box and click Finish.

260

A MESSAGE-DRIVEN BEAN EXAMPLE

The SimpleMessage module appears in the Projects window of the IDE. The
next step is to add a message-driven bean to the module.

Creating the SimpleM essageM DB

The code for the SimpleMessageBean class illustrates the requirements of a mes-
sage-driven bean class:

* It must implement the MessageDrivenBean and MessageListener interfaces.

» Theclass must be defined as public.

* The class cannot be defined as abstract Of final.

* It must implement one onMessage method.

* |t must implement one ejbCreate method and one ejbRemove method.

It must contain a public constructor with no arguments.

* It must not define the finalize method.
Unlike session and entity beans, message-driven beans do not have the remote or
local interfaces that define client access. Client components do not locate mes-
sage-driven beans and invoke methods on them. Although message-driven beans

do not have business methods, they may contain helper methods that are invoked
internally by the onMessage method.

To create the message-driven bean, perform the following steps:

1. Right-click the SimpleMessage node and choose New—Message-Driven

Bean.

2. Enter SimpleMessage as the Ejb Name.

3. Enter beans as the Package name.

4. Select queue as the Destination Type and click Finish.
The IDE creates the SimpleM essage enterprise bean and opens the SimpleM essage-
Bean class in the Source Editor.

For this example, the destination type is being specified as queue. The Destina-
tion Type can be either javax.jms.Queue Or javax.jms.Topic. A queue uses the point-to-
point messaging domain and can have at most one consumer. A topic uses the
publish/subscribe messaging domain; it can have zero, one, or many consumers.

THE EJBCREATE AND EJBREMOVE METHODS 261

When you create the message-driven bean, the IDE generates the following
methods in the SimpleMessageBean class:

* ¢bCreate

* gbRemove

¢ onMessage

These methods are hidden in the code fold in the Source Editor. Expand the code
fold to see the methods generated by the IDE and to add the logic to the methods.

The g bCreate and ggbRemove M ethods

The signatures of these methods have the following requirements:

» The access control modifier must be public.

¢ The return type must be void.

» The modifier cannot be static or final.

» The throws clause must not define any application exceptions.
The method has no arguments.

In SimpleMessageBean, the ejbCreate and ejbRemove methods are empty. These meth-
ods are required, but for this example the methods are not used and are emtpy.

The onMessage M ethod

When the queue receives a message, the EJB container invokes the onMessage
method of the message-driven bean.

The onMessage method is called by the bean’s container when a message has
arrived for the bean to service. This method contains the business logic that han-
dlesthe processing of the message. It is the message-driven bean’s responsibility
to parse the message and perform the necessary business logic.

The onMessage method has a single argument: the incoming message.

262 A MESSAGE-DRIVEN BEAN EXAMPLE

The message-driven bean class defines one onMessage method, whose signature
must follow theserules:

» The method must be declared as public and must not be declared as fina or
static.

* Thereturn type must be void.
» The method must have a single argument of type javax.jms.Message.
» The throws clause must not define any application exceptions.

» The onMessage method must be invoked in the scope of atransaction that is
determined by the transaction attribute specified in the deployment
descriptor.

In the SimpleMessageBean class, the onMessage method casts the incoming message
to a TextMessage and displays the text. In the Source Editor, edit the onMessage
method as follows:

public void onMessage(javax.jms.Message aM essage) {
TextMessage msg = null;

try {
if (aMessage instanceof TextMessage) {
msg = (TextMessage) aM essage;
logger.info("MESSAGE BEAN: Message received: " +
msg.getText());
} else{
logger.warning("'Message of wrong type: " +
aM essage.getClass().getName());
}
} catch (M SException €) {
e.printStack Trace();
mdc.setRollbackOnly();
} catch (Throwable te) {
te.printStack Trace();
}
}

In the Source Editor, add the following code to the public class declaration to
print information to the server log:

static final Logger logger = Logger.getL ogger("SimpleMessageBean™);

BUILDING AND DEPLOYING SIMPLEMESSAGE MODULE 263

Now import any necessary libraries for the message-driven bean. For the Sim-
pleM essage example, add the following import statements:

import javax.jms.JM SException;
import javax.jms.TextM essage;
import java.util.logging.Logger;

Import statements can be added manually, or the IDE can check and fix any
import statements in the class. To automatically add and fix the import state-
ments, place the insertion point anywhere in the body of the class in the Source
Editor and press Alt-Shift-F to Fix Imports. The IDE removes any unused import
statements and adds any missing important statements.

You are prompted by a dialog box when the IDE cannot locate a library or there
is more than one possible library. When there is more than one possible matching
library, select the correct library from the combo box.

Building and Deploying SimpleM essage
Module

Now that you have finished creating the EJB module, the next step is to build
and deploy the application to the SIS Application Server from within the IDE.
The source files for the SimpleM essage example are available in the <INSTALL>/
j2eetutorial 14/exampl es/ejb/simplemessage directory.

Building and Deploying the Application

After assembling and adding the message-driven bean to the EJB module, you
can build and deploy the application.

1. In the Projects window, right-click the SimpleMessage node and select
Build Main Project (F11) from the contextual menu.

2. Look at the Output window to ensure the application was built success-
fully.

3. In the Projects window, right-click the SimpleMessage node and select
Deploy Project from the contextual menu.

264

A MESSAGE-DRIVEN BEAN EXAMPLE

When you deploy the SimpleMessage example, the IDE registers the JMS
resources with the SIS Application Server. To see the registered resources,
expand the Servers node in the Runtime window of the IDE and expand the IMS
Resources node under the SIS Application Server instance. The IDE aso regis-
ters the related connector resources. The connector resources are visible in the
Connectors node in the Runtime window.

The deployed SimpleMessage application is visible in the Runtime window of
the IDE. To see the deployed application, expand the EJB Modules node in the
Applications node of the server instance. You can undeploy and disable the
application in the Runtime window.

Running the Client

After deploying the SimpleMessage application, run the SimpleMessageClient
to send a message to the SimpleM essage application.

1. In the Projects window, right-click the SimpleMessageClient node and
select Run Project from the contextual menu.
The following lines are displayed in the Output window of the IDE:
Sending message: Thisis message 1
Sending message: Thisis message 2
Sending message: Thisis message 3
To seeif the bean received the messages,
check <install_dir>/domains/domainl/logs/server.log.

In the server log file, the following lines should be displayed, wrapped in log-
ging information:

MESSAGE BEAN: Message received: Thisis message 1
MESSAGE BEAN: Message received: Thisis message 2
MESSAGE BEAN: Message received: Thisis message 3

Undeploy the application after you finish running the client.

Removing the Administered Objects

After you run the example, you can delete the connection factory and queue in
the Runtime window of the IDE.

1. Expand the SJS Application Server instance node under Servers in the
Runtime window.

REMOVING THE ADMINISTERED OBJECTS

2. Expand the IM S Resources node and the Connection Factories and Desti-
nation Resources nodes.

3. Right-click the resources and select Delete Resource from the contextual
menul.

When you delete the IMS resources, the related connector resources are aso
deleted. The resources are registered again when you redeploy the SimpleMes-

sage application.

265

266 A MESSAGE-DRIVEN BEAN EXAMPLE

Glossary

abstract schema
The part of an entity bean’s deployment descriptor that defines the bean’'s
persistent fields and relationships.

abstract schema name
A logica namethat is referenced in EJB QL queries.

access control
The methods by which interactions with resources are limited to collections
of users or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints.

ACID
The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

activation
The process of transferring an enterprise bean from secondary storage to
memory. (See passivation.)

anonymous access
Accessing aresource without authentication.

applet
A J2EE component that typically executes in aweb browser but can execute

in avariety of other applications or devices that support the applet program-
ming model.

applet container
A container that includes support for the applet programming model.

application assembler
A person who combines J2EE components and modules into deployable
application units.

application client
A first-tier J2EE client component that executes in its own Java virtual
machine. Application clients have access to some J2EE platform APIs.

application client container
A container that supports application client components.

267

268

GLOSSARY

application client module
A software unit that consists of one or more classes and an application client
deployment descriptor.

application component provider
A vendor that provides the Java classes that implement components’ meth-
ods, JSP page definitions, and any required deployment descriptors.

application configuration resourcefile
An XML file used to configure resources for a JavaServer Faces application,
to define navigation rules for the application, and to register converters, val-
idators, listeners, renderers, and components with the application.

archiving
The process of saving the state of an object and restoring it.

attribute
A qualifier on an XML tag that provides additional information.

authentication
The process that verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resourcesin
a system. The Java servlet specification requires three types of authentica-
tion—basic, form-based, and mutual—and supports digest authentication.

authorization
The process by which access to a method or resource is determined. Authori-
zation depends on the determination of whether the principal associated with
arequest through authentication isin a given security role. A security roleis
alogical grouping of users defined by the person who assembles the applica-
tion. A deployer maps security rolesto security identities. Security identities
may be principals or groups in the operational environment.

authorization constraint
An authorization rule that determines who is permitted to access a web
resource collection.

B2B
Business-to-business.

backing bean
A JavaBeans component that corresponds to a JSP page that includes Jav-
aServer Faces components. The backing bean defines properties for the
components on the page and methods that perform processing for the com-
ponent. This processing includes event handling, validation, and processing
associated with navigation.

GLOSSARY 269

basic authentication
An authentication mechanism in which a web server authenticates an entity
via a user name and password obtained using the web application’s built-in
authentication mechanism.

bean-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and aresource manager is managed by the entity bean.

bean-managed transaction
A transaction whose boundaries are defined by an enterprise bean.
binary entity
See unparsed entity.
binding (XML)
Generating the code needed to process a well-defined portion of XML data
binding (JavaServer Faces technology)

Wiring Ul components to back-end data sources such as backing bean prop-
erties.

build file
The XML file that contains one or more asant targets. A target is a set of tasks
you want to be executed. When starting asant, you can select which targets
you want to have executed. When no target is given, the project’s default tar-
get is executed.

businesslogic
The code that implements the functionality of an application. In the Enter-
prise JavaBeans architecture, thislogic is implemented by the methods of an
enterprise bean.

business method
A method of an enterprise bean that implements the business logic or rules
of an application.

callback methods
Component methods called by the container to notify the component of
important eventsin itslife cycle.

caller
Same as caller principal.

caller principal
The principal that identifies the invoker of the enterprise bean method.

cascade delete
A deletion that triggers another deletion. A cascade delete can be specified
for an entity bean that has container-managed persistence.

270

GLOSSARY

CDATA
A predefined XML tag for character data that means “don’t interpret these
characters,” as opposed to parsed character data (PCDATA), in which the nor-
mal rules of XML syntax apply. CDATA sections are typically used to show
examples of XML syntax.

certificate authority
A trusted organization that issues public key certificates and provides identi-
fication to the bearer.

client-certificate authentication
An authentication mechanism that uses HTTP over SSL, in which the server
and, optionally, the client authenticate each other with a public key certifi-
cate that conforms to a standard that is defined by X.509 Public Key Infra
structure.

comment
In an XML document, text that is ignored unless the parser is specifically
told to recognize it.

commit
The point in atransaction when all updates to any resources involved in the
transaction are made permanent.

component
See J2EE component.

component (JavaServer Faces technology)
See JavaServer Faces Ul component.

component contract
The contract between a J2EE component and its container. The contract
includes life-cycle management of the component, a context interface that
the instance uses to obtain various information and services from its con-
tainer, and alist of servicesthat every container must provide for its compo-
nents.

component-managed sign-on
A mechanism whereby security information needed for signing on to a
resource is provided by an application component.

connection
See resource manager connection.

connection factory
See resource manager connection factory:.

GLOSSARY

connector
A standard extension mechanism for containers that provides connectivity to
enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for system-level con-
tracts defined in the Connector architecture.

Connector architecture
An architecture for integration of J2EE products with enterprise information
systems. There are two parts to this architecture: aresource adapter provided
by an enterprise information system vendor and the J2EE product that allows
this resource adapter to plug in. This architecture defines a set of contracts
that a resource adapter must support to plug in to a J2EE product—for exam-
ple, transactions, security, and resource management.

container
An entity that provides life-cycle management, security, deployment, and
runtime services to J2EE components. Each type of container (EJB, web,
JSP, servlet, applet, and application client) also provides component-specific
services.

container-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and aresource manager is managed by the entity bean’s container.
container-managed sign-on
The mechanism whereby security information needed for signing on to a
resource is supplied by the container.

container-managed transaction
A transaction whose boundaries are defined by an EJB container. An entity
bean must use container-managed transactions.

content
Inan XML document, the part that occurs after the prolog, including the root
element and everything it contains.

context attribute
An object bound into the context associated with a serviet.

context root
A name that gets mapped to the document root of a web application.

conversational state
The field values of a session bean plus the transitive closure of the objects
reachable from the bean’'s fields. The transitive closure of a bean is defined

271

272

GLOSSARY

in terms of the serialization protocol for the Java programming language,
that is, the fields that would be stored by serializing the bean instance.

CORBA
Common Object Request Broker Architecture. A language-independent dis-
tributed object model specified by the OMG.

create method
A method defined in the home interface and invoked by a client to create an
enterprise bean.

credentials
The information describing the security attributes of a principal.

CSSs
Cascading style sheet. A stylesheet used with HTML and XML documents
to add a style to all elements marked with a particular tag, for the direction of
browsers or other presentation mechanisms.

CTS
Compatibility test suite. A suite of compatibility tests for verifying that a
J2EE product complies with the J2EE platform specification.

data
The contents of an element in an XML stream, generally used when the ele-
ment does not contain any subelements. When it does, the term content is
generally used. When the only text in an XML structureis contained in sim-
ple elements and when elements that have subelements have little or no data
mixed in, then that structure is often thought of as XML data, as opposed to
an XML document.

DDP
Document-driven programming. The use of XML to define applications.

declaration
The very first thing in an XML document, which declares it as XML. The
minimal declaration is <>ml version="1.0"?>. The declaration is part of the
document prolog.

declarative security
Mechanisms used in an application that are expressed in a declarative syntax
in a deployment descriptor.

delegation
An act whereby one principa authorizes another principal to use its identity
or privileges with some restrictions.

GLOSSARY

deployer
A person who instals J2EE modules and applications into an operational
environment.

deployment
The process whereby software isinstalled into an operational environment.

deployment descriptor
An XML file provided with each module and J2EE application that
describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container
options and describes specific configuration requirements that a deployer
must resolve.

destination
A IJMS administered object that encapsulates the identity of a JM S queue or
topic. See point-to-point messaging system, publish/subscribe messaging
system.

digest authentication
An authentication mechanism in which aweb application authenticates itself
to aweb server by sending the server a message digest along with itsHTTP
request message. The digest is computed by employing a one-way hash
algorithm to a concatenation of the HTTP request message and the client’s
password. The digest is typically much smaller than the HTTP request and
doesn’'t contain the password.

distributed application
An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typi-
ca distributed applications are two-tier (client-server), three-tier (client-
middleware-server), and multitier (client-multiple middleware-multiple
servers).

document
In general, an XML structure in which one or more elements contains text
intermixed with subelements. See also data.

Document Object Model
An API for accessing and manipulating XML documents as tree structures.
DOM provides platform-neutral, language-neutral interfaces that enables
programs and scripts to dynamically access and modify content and structure
in XML documents.

document root
The top-level directory of a WAR. The document root is where JSP pages,
client-side classes and archives, and static web resources are stored.

273

274

GLOSSARY
DOM
See Document Object Model.
DTD

Document type definition. An optional part of the XML document prolog, as
specified by the XML standard. The DTD specifies constraints on the valid
tags and tag sequences that can be in the document. The DTD has a humber
of shortcomings, however, and this has led to various schema proposals. For
example, the DTD entry <lELEMENT username (#PCDATA)> says that the XML
element called username contains parsed character data—that is, text alone,
with no other structural elements under it. The DTD includes both the local
subset, defined in the current file, and the external subset, which consists of
the definitions contained in external DTD files that are referenced in the
local subset using a parameter entity.

durable subscription
In aJMS publish/subscribe messaging system, a subscription that continues
to exist whether or not there is a current active subscriber object. If thereis
no active subscriber, the IMS provider retains the subscription’s messages
until they are received by the subscription or until they expire.

EAR file
Enterprise Archivefile. A JAR archive that contains a J2EE application.

ebXML
Electronic Business XML. A group of specifications designed to enable
enterprises to conduct business through the exchange of XML-based mes-
sages. It is sponsored by OASIS and the United Nations Centre for the Facil-
itation of Procedures and Practices in Administration, Commerce and
Transport (U.N./CEFACT).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for enterprise beans
that includes security, concurrency, life-cycle management, transactions,
deployment, naming, and other services. An EJB container is provided by an
EJB or J2EE server.

EJB container provider
A vendor that supplies an EJB container.

GLOSSARY

EJB context
An object that allows an enterprise bean to invoke services provided by the
container and to obtain the information about the caller of a client-invoked
method.

EJB home abject
An object that provides the life-cycle operations (create, remove, find) for an
enterprise bean. The class for the EJB home object is generated by the con-
tainer’s deployment tools. The EJB home object implements the enterprise
bean’s home interface. The client references an EJB home object to perform
life-cycle operations on an EJB object. The client uses JNDI to locate an
EJB home object.

EJB JAR file
A JAR archive that contains an EJB module.

EJB module
A deployable unit that consists of one or more enterprise beans and an EJB
deployment descriptor.

EJB object
An object whose class implements the enterprise bean’s remote interface. A
client never references an enterprise bean instance directly; a client always
references an EJB object. The class of an EJB object is generated by a con-
tainer’s deployment tools.

EJB server
Software that provides services to an EJB container. For example, an EJB
container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across al the participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by
an EJB server from the same vendor, so it does not specify the contract
between these two entities. An EJB server can host one or more EJB con-
tainers.

EJB server provider
A vendor that supplies an EJB server.

element
A unit of XML data, delimited by tags. An XML element can enclose other
elements.

empty tag
A tag that does not enclose any content.

275

276

GLOSSARY

enterprise bean
A J2EE component that implements a business task or business entity and is
hosted by an EJB container; either an entity bean, a session bean, or a mes-
sage-driven bean.

enterprise bean provider
An application developer who produces enterprise bean classes, remote and
home interfaces, and deployment descriptor files, and packages them in an
EJB JAR file.

enterpriseinformation system

The applications that congtitute an enterprise’s existing system for handling
companywide information. These applications provide an information infra
structure for an enterprise. An enterprise information system offers a well-
defined set of servicesto its clients. These services are exposed to clients as
local or remote interfaces or both. Examples of enterprise information sys-
tems include enterprise resource planning systems, mainframe transaction
processing systems, and legacy database systems.

enter priseinformation system resource
An entity that provides enterprise information system-specific functionality
to its clients. Examples are arecord or set of records in a database system, a
business object in an enterprise resource planning system, and a transaction
program in a transaction processing system.

Enterprise JavaBeans (EJB)
A component architecture for the development and deployment of object-
oriented, distributed, enterprise-level applications. Applications written
using the Enterprise JavaBeans architecture are scalable, transactional, and
Ssecure.

Enterprise JavaBeans Query Language (EJB QL)
Defines the queries for the finder and select methods of an entity bean hav-
ing container-managed persistence. A subset of SQL92, EJB QL has exten-
sions that allow navigation over the relationships defined in an entity bean’s
abstract schema.

entity
A distinct, individual item that can be included in an XML document by ref-
erencing it. Such an entity reference can name an entity as small as a charac-
ter (for example, <, which references the less-than symbol or left angle
bracket, <). An entity reference can also reference an entire document, an
external entity, or acollection of DTD definitions.

GLOSSARY

entity bean
An enterprise bean that represents persistent data maintained in a database.
An entity bean can manage its own persistence or can delegate this function
toits container. An entity bean isidentified by aprimary key. If the container
in which an entity bean is hosted crashes, the entity bean, its primary key,
and any remote references survive the crash.

entity reference

A reference to an entity that is substituted for the reference when the XML
document is parsed. It can reference a predefined entity such as < or refer-
ence onethat isdefined inthe DTD. In the XML data, the reference could be
to an entity that is defined in the local subset of the DTD or to an external
XML file (an externa entity). The DTD can aso carve out a segment of
DTD specifications and give it a name so that it can be reused (included) at
multiple pointsin the DTD by defining a parameter entity.

error
A SAX parsing error is generally avalidation error; in other words, it occurs
when an XML document is not valid, although it can also occur if the decla-
ration specifies an XML version that the parser cannot handle. See also fatal
error, warning.

Extensible Markup Language
See XML.

external entity
An entity that exists as an external XML file, which isincluded in the XML
document using an entity reference.

external subset
That part of aDTD that is defined by references to external DTD files.

fatal error
A fatal error occursin the SAX parser when a document is not well formed
or otherwise cannot be processed. See also error, warning.

filter
An abject that can transform the header or content (or both) of a request or
response. Filters differ from web components in that they usually do not
themselves create responses but rather modify or adapt the requests for a
resource, and modify or adapt responses from aresource. A filter should not
have any dependencies on aweb resource for which it is acting as afilter so
that it can be composable with more than one type of web resource.

filter chain
A concatenation of XSLT transformations in which the output of one trans-
formation becomes the input of the next.

277

278

GLOSSARY

finder method
A method defined in the home interface and invoked by a client to locate an
entity bean.

form-based authentication
An authentication mechanism in which aweb container provides an applica-
tion-specific form for logging in. This form of authentication uses Base64
encoding and can expose user names and passwords unless all connections
are over SSL.

general entity
An entity that is referenced as part of an XML document’s content, as dis-
tinct from a parameter entity, which is referenced in the DTD. A generd
entity can be a parsed entity or an unparsed entity.

group
An authenticated set of users classified by common traits such asjob title or
customer profile. Groups are also associated with a set of roles, and every
user that is a member of agroup inherits all the roles assigned to that group.

handle
An object that identifies an enterprise bean. A client can serialize the handle
and then later deserialize it to obtain areference to the enterprise bean.

home handle
An object that can be used to obtain a reference to the home interface. A
home handle can be serialized and written to stable storage and deseriaized
to obtain the reference.

homeinterface
One of two interfaces for an enterprise bean. The home interface defines
zero or more methods for managing an enterprise bean. The home interface
of a session bean defines create and remove methods, whereas the home inter-
face of an entity bean defines create, finder, and remove methods.

HTML
Hypertext Markup Language. A markup language for hypertext documents
on the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other objects with URLS, and basic text
formatting.

HTTP
Hypertext Transfer Protocol. The Internet protocol used to retrieve hypertext
objects from remote hosts. HT TP messages consist of requests from client to
server and responses from server to client.

HTTPS
HTTP layered over the SSL protocol.

GLOSSARY

IDL
Interface Definition Language. A language used to define interfaces to
remote CORBA objects. The interfaces are independent of operating sys-
tems and programming languages.

[1OP
Internet Inter-ORB Protocol. A protocol used for communication between
CORBA abject request brokers.

imper sonation
An act whereby one entity assumes the identity and privileges of another
entity without restrictions and without any indication visible to the recipients
of the impersonator’s calls that delegation has taken place. Impersonation is
acase of ssmple delegation.

initialization parameter
A parameter that initializes the context associated with a servlet.

I SO 3166
The international standard for country codes maintained by the International
Organization for Standardization (1SO).

Y
Independent software vendor.

J2EE
See Java 2 Platform, Enterprise Edition.

J2EE application
Any deployable unit of J2EE functionality. This can be a single J2EE mod-
ule or a group of modules packaged into an EAR file aong with a J2EE
application deployment descriptor. J2EE applications are typically engi-
neered to be distributed across multiple computing tiers.

J2EE component
A self-contained functional software unit supported by a container and con-
figurable at deployment time. The J2EE specification defines the following
J2EE components:

» Application clients and applets are components that run on the client.

» Java servlet and JavaServer Pages (JSP) technology components are web
components that run on the server.

» Enterprise JavaBeans (EJB) components (enterprise beans) are business
components that run on the server.

J2EE components are written in the Java programming language and are
compiled in the same way as any program in the language. The difference
between J2EE components and “ standard” Java classes is that J2EE compo-

279

280

GLOSSARY

nents are assembled into a J2EE application, verified to be well formed and
in compliance with the J2EE specification, and deployed to production,
where they are run and managed by the J2EE server or client container.

J2EE module
A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type. There are four
types of modules: EJB, web, application client, and resource adapter. Mod-
ules can be deployed as stand-alone units or can be assembled into a J2EE
application.

J2EE product
An implementation that conforms to the J2EE platform specification.

J2EE product provider
A vendor that supplies a J2EE product.

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB or web
containers or both.

J2ME
See Java 2 Platform, Micro Edition.

J2SE
See Java 2 Platform, Sandard Edition.

JAR
Java archive. A platform-independent file format that permits many files to
be aggregated into onefile.

Java 2 Platform, Enter prise Edition (J2EE)
An environment for developing and deploying enterprise applications. The
J2EE platform consists of a set of services, application programming inter-
faces (APIs), and protocols that provide the functionality for developing
multitiered, web-based applications.

Java 2 Platform, Micro Edition (J2ME)
A highly optimized Java runtime environment targeting awide range of con-
sumer products, including pagers, cellular phones, screen phones, digital set-
top boxes, and car navigation systems.

Java 2 Platform, Sandard Edition (J2SE)
The core Javatechnology platform.

Java API for XML Processing (JAXP)
An API for processing XML documents. JAXP leverages the parser stan-
dards SAX and DOM so that you can choose to parse your data as a stream
of events or to build atree-structured representation of it. JAXP supports the

GLOSSARY

XSLT standard, giving you control over the presentation of the data and
enabling you to convert the data to other XML documents or to other for-
mats, such as HTML. JAXP provides namespace support, allowing you to
work with schema that might otherwise have naming conflicts.

Java API for XML Registries (JAXR)
An API for accessing various kinds of XML registries.

Java API for XML-based RPC (JAX-RPC)
An API for building web services and clients that use remote procedure calls
and XML.

Java DL
A technology that provides CORBA interoperability and connectivity capa-
bilities for the J2EE platform. These capabilities enable J2EE applications to
invoke operations on remote network services using the Object Management
Group IDL and I1OP.

Java Message Service (JMS)
An API for invoking operations on enterprise messaging systems.

Java Naming and Directory I nterface (JNDI)
An API that provides naming and directory functionality.

Java Secure Socket Extension (JSSE)
A set of packages that enable secure Internet communications.

Java Transaction API (JTA)
An API that allows applications and J2EE serversto access transactions.

Java Transaction Service (JTS)
Specifies the implementation of a transaction manager that supports JTA and
implements the Java mapping of the Object Management Group Object
Transaction Service 1.1 specification at the level below the API.

JavaBeans component
A Java class that can be manipulated by tools and composed into applica-
tions. A JavaBeans component must adhere to certain property and event
interface conventions.

JavaMail
An API for sending and receiving email.

JavaServer Faces
A framework for building server-side user interfaces for web applications
written in the Java programming language.

JavaServer Faces conver sion model
A mechanism for converting between string-based markup generated by Jav-
aServer Faces Ul components and server-side Java objects.

281

282

GLOSSARY

JavaServer Faces event and listener model
A mechanism for determining how events emitted by JavaServer Faces Ul
components are handled. This model is based on the JavaBeans component
event and listener model.

JavaServer Faces expression language
A simple expression language used by a JavaServer Faces Ul component tag
attributes to bind the associated component to a bean property or to bind the
associated component’s value to a method or an external data source, such as
a bean property. Unlike JSP EL expressions, JavaServer Faces EL expres
sions are evaluated by the JavaServer Faces implementation rather than by
the web container.

JavaServer Faces navigation model
A mechanism for defining the sequence in which pages in a JavaServer
Faces application are displayed.

JavaServer Faces Ul component
A user interface control that outputs data to a client or allows a user to input
data to a JavaServer Faces application.

JavaServer Faces Ul component class
A JavaServer Faces class that defines the behavior and properties of a Jav-
aServer Faces Ul component.

JavaServer Facesvalidation model
A mechanism for validating the data a user inputs to a JavaServer Faces Ul
component.

JavaServer Pages (JSP)
An extensible web technology that uses static data, JSP elements, and
server-side Java objects to generate dynamic content for a client. Typically
the static dataisHTML or XML elements, and in many cases the client isa
web browser.

JavaServer Pages Sandard Tag Library (JSTL)
A tag library that encapsulates core functionality common to many JSP
applications. JSTL has support for common, structural tasks such asiteration
and conditionals, tags for manipulating XML documents, internationaliza-
tion and local e-specific formatting tags, SQL tags, and functions.

JAXR client
A client program that uses the JAXR API to access abusiness registry viaa
JAXR provider.

GLOSSARY

JAXR provider
An implementation of the JAXR API that provides access to a specific regis-
try provider or to a class of registry providers that are based on a common
specification.

JDBC
An APl for database-independent connectivity between the J2EE platform
and awide range of data sources.

JMS
See Java Message Service.

JM S administered object
A preconfigured JMS object (a resource manager connection factory or a
destination) created by an administrator for the use of JMS clients and
placed in a INDI namespace.

JM S application
One or more JMS clients that exchange messages.

JMSclient
A Javalanguage program that sends or receives messages.

JM S provider
A messaging system that implements the Java Message Service as well as
other administrative and control functionality needed in a full-featured mes-
saging product.

JM S session
A single-threaded context for sending and receiving JIMS messages. A IMS
session can be nontransacted, locally transacted, or participating in a distrib-
uted transaction.

JNDI
See Java Naming and Directory Interface.

JSP
See JavaServer Pages.

JSP action
A JSP element that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for
elements, with a start tag, a body, and an end tag; if the body is empty it can
also use the empty tag syntax. The tag must use a prefix. There are standard
and custom actions.

JSP container
A container that provides the same services as a servlet container and an
engine that interprets and processes JSP pages into a servlet.

283

284

GLOSSARY

JSP container, distributed
A JSP container that can run aweb application that is tagged as distributable
and is spread across multiple Javavirtual machines that might be running on
different hosts.

JSP custom action
A user-defined action described in a portable manner by a tag library
descriptor and imported into a JSP page by ataglib directive. Custom actions
are used to encapsulate recurring tasks in writing JSP pages.

JSP custom tag
A tag that references a JSP custom action.

JSP declaration
A JSP scripting element that declares methods, variables, or both in a JSP
page.

JSP directive
A JSP element that gives an instruction to the JSP container and is inter-
preted at trandation time.

JSP document
A JSP page written in XML syntax and subject to the constraints of XML
documents.

JSP element
A portion of a JSP page that is recognized by a JSP trandator. An element
can be adirective, an action, or a scripting element.

JSP expression
A scripting element that contains a valid scripting language expression that
is evaluated, converted to a String, and placed into the implicit out object.

JSP expression language
A language used to write expressions that access the properties of JavaBeans
components. EL expressions can be used in static text and in any standard or
custom tag attribute that can accept an expression.

JSP page
A text-based document containing static text and JSP elements that describes
how to process a request to create a response. A JSP page is translated into
and handles requests as a servlet.

JSP scripting element
A JSP declaration, scriptlet, or expression whose syntax is defined by the
JSP specification and whose content is written according to the scripting lan-
guage used in the JSP page. The JSP specification describes the syntax and
semantics for the case where the language page attribute is "java'.

GLOSSARY

JSP scriptlet
A JSP scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes
what is a valid scriptlet for the case where the language page attribute is
“java'.

JSP standard action
An action that is defined in the JSP specification and is always available to a
JSP page.

JSP tagfile
A source file containing a reusable fragment of JSP code that is trandated
into atag handler when a JSP page is translated into a servlet.

JSP tag handler
A Java programming language object that implements the behavior of a cus-
tom tag.

JSP tag library
A collection of custom tags described via a tag library descriptor and Java
classes.

JSTL
See JavaServer Pages Sandard Tag Library.

JTA
See Java Transaction API.

JTS
See Java Transaction Service.

keystore
A file containing the keys and certificates used for authentication.

life cycle (J2EE component)

The framework events of a J2EE component’s existence. Each type of com-
ponent has defining events that mark its transition into states in which it has
varying availability for use. For example, a servlet is created and has its init
method called by its container before invocation of its service method by cli-
ents or other servlets that require its functionality. After the call of its init
method, it has the data and readiness for itsintended use. The servlet’s destroy
method is caled by its container before the ending of its existence so that
processing associated with winding up can be done and resources can be
released. The init and destroy methods in this example are callback methods.
Similar considerations apply to the life cycle of all J2EE component types:
enterprise beans, web components (servliets or JSP pages), applets, and
application clients.

285

286 GLOSSARY

life cycle (JavaServer Faces)
A set of phases during which a request for a page is received, a Ul compo-
nent tree representing the page is processed, and a response is produced.
During the phases of the life cycle:

» Theloca data of the components is updated with the values contained in
the request parameters.

» Events generated by the components are processed.
» Validators and converters registered on the components are processed.
» The components' local datais updated to back-end objects.

» The response is rendered to the client while the component state of the
response is saved on the server for future requests.

local subset
That part of the DTD that is defined within the current XML file.

managed bean creation facility
A mechanism for defining the characteristics of JavaBeans components used
in a JavaServer Faces application.

message
In the Java Message Service, an asynchronous request, report, or event that
is created, sent, and consumed by an enterprise application and not by a
human. It contains vital information needed to coordinate enterprise applica-
tions, in the form of precisely formatted data that describes specific business
actions.

message consumer
An object created by a IMS session that is used for receiving messages sent
to a destination.

message-driven bean
An enterprise bean that is an asynchronous message consumer. A message-
driven bean has no state for a specific client, but its instance variables can
contain state across the handling of client messages, including an open data-
base connection and an object reference to an EJB object. A client accesses a
message-driven bean by sending messages to the destination for which the
bean is a message listener.

message producer
An object created by a IMS session that is used for sending messages to a
destination.

mixed-content model
A DTD specification that defines an element as containing a mixture of text
and one more other elements. The specification must start with #PCDATA,

GLOSSARY

followed by diverse elements, and must end with the “zero-or-more” asterisk
symbol (*).

method-binding expression
A JavaServer Faces EL expression that refers to a method of abacking bean.
This method performs either event handling, validation, or navigation pro-
cessing for the Ul component whose tag uses the method-binding expres-
sion.

method permission
An authorization rule that determines who is permitted to execute one or
more enterprise bean methods.

mutual authentication
An authentication mechanism employed by two parties for the purpose of
proving each other’s identity to one another.

namespace

A standard that lets you specify a unique label for the set of element names
defined by aDTD. A document using that DTD can be included in any other
document without having a conflict between element names. The elements
defined in your DTD are then uniquely identified so that, for example, the
parser can tell when an element <name> should be interpreted according to
your DTD rather than using the definition for an element <name> in a differ-
ent DTD.

naming context
A set of associations between unique, atomic, people-friendly identifiers and
objects.

naming environment
A mechanism that allows a component to be customized without the need to
access or change the component’s source code. A container implements the
component’s naming environment and provides it to the component as a
JNDI naming context. Each component names and accesses its environment
entries using the javacomp/env INDI context. The environment entries are
declaratively specified in the component’s deployment descriptor.

nor malization
The process of removing redundancy by modularizing, as with subroutines,
and of removing superfluous differences by reducing them to a common
denominator. For example, line endings from different systems are normal-
ized by reducing them to a single new line, and multiple whitespace charac-
ters are normalized to one space.

287

288

GLOSSARY

North American Industry Classification System (NAICS)
A system for classifying business establishments based on the processes they
use to produce goods or services.

notation
A mechanism for defining a data format for a non-XML document refer-
enced as an unparsed entity. This is a holdover from SGML. A newer stan-
dard isto use MIME datatypes and namespaces to prevent naming conflicts.

OASIS
Organization for the Advancement of Structured Information Standards. A
consortium that drives the development, convergence, and adoption of e
business standards. Its web site is http://www.oasis-open.org/. The DTD reposi-
tory it sponsorsis at http://www.XML.org.

OMG
Object Management Group. A consortium that produces and maintains com-
puter industry specifications for interoperable enterprise applications. Its
web site is http://www.omg.org/.

one-way messaging
A method of transmitting messages without having to block until a response
isreceived.

ORB
Object request broker. A library that enables CORBA objects to locate and
communicate with one another.

OSprincipal
A principal native to the operating system on which the J2EE platform is
executing.

oTS
Object Transaction Service. A definition of the interfaces that permit
CORBA aobjectsto participate in transactions.

parameter entity
An entity that consists of DTD specifications, as distinct from a general
entity. A parameter entity defined in the DTD can then be referenced at other
points, thereby eliminating the need to recode the definition at each location
it isused.

parsed entity
A generd entity that contains XML and therefore is parsed when inserted
into the XML document, as opposed to an unparsed entity.

http://www.oasis-open.org/
http://www.XML.org
http://www.omg.org/

GLOSSARY

par ser
A module that reads in XML data from an input source and breaks it into
chunks so that your program knows when it is working with a tag, an
attribute, or element data. A nonvalidating parser ensures that the XML data
iswell formed but does not verify that it isvalid. See also validating parser.
passivation
The process of transferring an enterprise bean from memory to secondary
storage. See activation.

persistence
The protocol for transferring the state of an entity bean between its instance
variables and an underlying database.

persistent field
A virtua field of an entity bean that has contai ner-managed persistence; itis
stored in a database.

POA
Portable Object Adapter. A CORBA standard for building server-side appli-
cations that are portable across heterogeneous ORBSs.

point-to-point messaging system
A messaging system built on the concept of message queues. Each message
is addressed to a specific queue; clients extract messages from the queues
established to hold their messages.

primary key
An object that uniquely identifies an entity bean within ahome.

principal
The identity assigned to a user as aresult of authentication.

privilege
A security attribute that does not have the property of uniqueness and that
can be shared by many principals.

processing instruction
Information contained in an XML structure that is intended to be interpreted
by a specific application.

programmatic security
Security decisions that are made by security-aware applications. Program-
matic security is useful when declarative security alone is not sufficient to
express the security model of an application.

prolog
The part of an XML document that precedes the XML data. The prolog
includes the declaration and an optional DTD.

289

290

GLOSSARY

public key certificate
Used in client-certificate authentication to enable the server, and optionally
the client, to authenticate each other. The public key certificate is the digital
equivalent of a passport. It isissued by atrusted organization, called a certif-
icate authority, and provides identification for the bearer.

publish/subscribe messaging system
A messaging system in which clients address messages to a specific node in
a content hierarchy, called a topic. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierar-
chy. The system takes care of distributing the messages arriving from a
node’s multiple publishers to its multiple subscribers.

query string
A component of an HTTP request URL that contains a set of parameters and
values that affect the handling of the request.

queue
See point-to-point messaging system.

RAR
Resource Adapter Archive. A JAR archive that contains a resource adapter
module.

RDF
Resource Description Framework. A standard for defining the kind of data
that an XML file contains. Such information can help ensure semantic integ-
rity—for example—by helping to make sure that a date is treated as a date
rather than simply as text.

RDF schema
A standard for specifying consistency rules that apply to the specifications
contained in an RDF.

realm
See security policy domain. Also, astring, passed as part of an HTTP request
during basic authentication, that defines a protection space. The protected
resources on a server can be partitioned into a set of protection spaces, each
with its own authentication scheme or authorization database or both.

In the J2EE server authentication service, arealm is a complete database of
roles, users, and groups that identify valid users of aweb application or a set
of web applications.

reentrant entity bean
An entity bean that can handle multiple simultaneous, interleaved, or nested
invocations that will not interfere with each other.

GLOSSARY

reference
See entity reference.

registry
An infrastructure that enables the building, deployment, and discovery of
web services. It is a neutral third party that facilitates dynamic and loosely
coupled business-to-business (B2B) interactions.

registry provider
An implementation of abusiness registry that conforms to a specification for
XML registries (for example, ebXML or UDDI).

relationship field
A virtual field of an entity bean having container-managed persistence; it
identifies arelated entity bean.

remoteinterface
One of two interfaces for an enterprise bean. The remote interface defines
the business methods callable by aclient.

remove method
Method defined in the home interface and invoked by a client to destroy an
enterprise bean.

render kit
A set of renderers that render output to a particular client. The JavaServer
Faces implementation provides a standard HTML render kit, which is com-
posed of renderers that can render HMTL markup.

renderer
A Java class that can render the output for a set of JavaServer Faces Ul com-
ponents.

request-response messaging
A method of messaging that includes blocking until aresponseis received.

resour ce adapter
A system-level software driver that is used by an EJB container or an appli-
cation client to connect to an enterprise information system. A resource
adapter typicaly is specific to an enterprise information system. It is avail-
able as alibrary and is used within the address space of the server or client
using it. A resource adapter plugs in to a container. The application compo-
nents deployed on the container then use the client APl (exposed by the
adapter) or tool-generated high-level abstractions to access the underlying
enterprise information system. The resource adapter and EJB container col-
laborate to provide the underlying mechanisms—transactions, security, and
connection pooling—for connectivity to the enterprise information system.

291

292

GLOSSARY

resour ce adapter module
A deployable unit that contains al Javainterfaces, classes, and native librar-
ies, implementing a resource adapter along with the resource adapter deploy-
ment descriptor.

resour ce manager
Provides accessto a set of shared resources. A resource manager participates
in transactions that are externally controlled and coordinated by atransaction
manager. A resource manager typically isin adifferent address space or on a
different machine from the clients that access it. Note: An enterprise infor-
mation system is referred to as a resource manager when it is mentioned in
the context of resource and transaction management.

resour ce manager connection
An object that represents a session with a resource manager.

resource manager connection factory
An object used for creating a resource manager connection.

RMI
Remote Method Invocation. A technology that alows an object running in
one Javavirtual machine to invoke methods on an object running in a differ-
ent Java virtual machine.

RMI-110OP
A version of RMI implemented to use the CORBA 11OP protocol. RMI over
IIOP provides interoperability with CORBA objects implemented in any
languageif al the remote interfaces are originally defined as RMI interfaces.

role (development)
The function performed by a party in the development and deployment
phases of an application developed using J2EE technology. The roles are
application component provider, application assembler, deployer, J2EE
product provider, EJB container provider, EJB server provider, web con-
tainer provider, web server provider, tool provider, and system administrator.

role mapping
The process of associating the groups or principals (or both), recognized by
the container with security roles specified in the deployment descriptor.
Security roles must be mapped by the deployer before a component is
installed in the server.

role (security)
An abstract logical grouping of users that is defined by the application
assembler. When an application is deployed, the roles are mapped to security
identities, such as principals or groups, in the operational environment.

GLOSSARY

In the J2EE server authentication service, arole is an abstract name for per-
mission to access a particular set of resources. A role can be compared to a
key that can open a lock. Many people might have a copy of the key; the
lock doesn’t care who you are, only that you have the right key.

rollback
The point in atransaction when all updates to any resources involved in the
transaction are reversed.

root
The outermost element in an XML document. The element that contains all
other elements.

SAX
See Smple API for XML.

Simple API for XML
An event-driven interface in which the parser invokes one of several meth-
ods supplied by the caller when a parsing event occurs. Events include rec-
ognizing an XML tag, finding an error, encountering a reference to an
external entity, or processing a DTD specification.

schema
A database-inspired method for specifying constraints on XML documents
using an XML -based language. Schemas address deficienciesin DTDs, such
astheinability to put constraints on the kinds of data that can occur in a par-
ticular field. Because schemas are founded on XML, they are hierarchical.
Thusit is easier to create an unambiguous specification, and it is possible to
determine the scope over which a comment is meant to apply.

Secure Socket Layer (SSL)
A technology that allows web browsers and web servers to communicate
over a secured connection.

security attributes
A set of properties associated with a principal. Security attributes can be
associated with a principal by an authentication protocol or by a J2EE prod-
uct provider or both.

security constraint
A declarative way to annotate the intended protection of web content. A
security constraint consists of a web resource collection, an authorization
constraint, and a user data constraint.

security context
An object that encapsulates the shared state information regarding security
between two entities.

293

294

GLOSSARY

security permission
A mechanism defined by J2SE, and used by the J2EE platform to expressthe
programming restrictions imposed on application component developers.

security permission set
The minimum set of security permissions that a J2EE product provider must
provide for the execution of each component type.

security policy domain
A scope over which security policies are defined and enforced by a security
administrator. A security policy domain has a collection of users (or princi-
pals), uses a well-defined authentication protocol or protocols for authenti-
cating users (or principals), and may have groups to simplify setting of
security policies.

security role
Seerole (security).

security technology domain
A scope over which the same security mechanism is used to enforce a secu-
rity policy. Multiple security policy domains can exist within a single tech-
nology domain.

security view
The set of security roles defined by the application assembler.

server certificate
Used with the HTTPS protocol to authenticate web applications. The certifi-
cate can be self-signed or approved by a certificate authority (CA). The
HTTPS service of the Sun Java System Application Server Platform Edition
8.1 will not run unless a server certificate has been installed.

server principal
The OS principa that the server is executing as.

service element
A representation of the combination of one or more Connector components
that share a single engine component for processing incoming requests.

service endpoint interface
A Java interface that declares the methods that a client can invoke on aweb
service.

servlet
A Java program that extends the functionality of a web server, generating
dynamic content and interacting with web applications using a request-
response paradigm.

GLOSSARY

servlet container
A container that provides the network services over which requests and
responses are sent, decodes requests, and formats responses. All servlet con-
tainers must support HTTP as a protocol for requests and responses but can
also support additional request-response protocols, such asHTTPS.

servlet container, distributed
A servlet container that can run aweb application that is tagged as distribut-
able and that executes across multiple Java virtual machines running on the
same host or on different hosts.

servlet context
An object that contains a servlet’s view of the web application within which
the servlet is running. Using the context, a servlet can log events, obtain
URL references to resources, and set and store attributes that other servlets
in the context can use.

servlet mapping
Defines an association between a URL pattern and a servlet. The mapping is
used to map requests to servlets.

session
An object used by a servlet to track a user’s interaction with a web applica-
tion across multiple HTTP requests.

session bean

An enterprise bean that is created by a client and that usually exists only for
the duration of asingle client-server session. A session bean performs opera-
tions, such as calculations or database access, for the client. Although a ses-
sion bean can be transactional, it is not recoverable should a system crash
occur. Session bean objects either can be stateless or can maintain conversa
tional state across methods and transactions. If a session bean maintains
state, then the EJB container manages this state if the object must be
removed from memory. However, the session bean object itself must man-
age its own persistent data.

SGML
Standard Generalized Markup Language. The parent of both HTML and
XML. Although HTML shares SGML's propensity for embedding presenta-
tion information in the markup, XML is a standard that allows information
content to be totally separated from the mechanisms for rendering that con-
tent.

SOAP
Simple Object Access Protocol. A lightweight protocol intended for
exchanging structured information in a decentralized, distributed environ-

295

296

GLOSSARY

ment. It defines, using XML technologies, an extensible messaging frame-
work containing a message construct that can be exchanged over avariety of
underlying protocols.

SOAP with Attachments API for Java (SAAJ)
The basic package for SOAP messaging, SAAJ containsthe API for creating
and populating a SOAP message.

SQL
Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J
A set of standards that includes specifications for embedding SQL state-

ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detect errorsin static SQL statements at program
development time, rather than at execution time as with a JDBC driver.

SSL
Secure Socket Layer. A security protocol that provides privacy over the
Internet. The protocol allows client-server applications to communicate in a
way that cannot be eavesdropped upon or tampered with. Servers are always
authenticated, and clients are optionally authenticated.

stateful session bean
A session bean with a conversational state.

stateless session bean
A session bean with no conversational state. All instances of a stateless ses-
sion bean are identical.

system administrator
The person responsible for configuring and administering the enterprise’s
computers, networks, and software systems.

tag
In XML documents, a piece of text that describes a unit of data or an ele-
ment. The tag is distinguishable as markup, as opposed to data, because it is
surrounded by angle brackets (< and >). To treat such markup syntax as data,
you use an entity reference or a CDATA section.

template
A set of formatting instructions that apply to the nodes selected by an XPath
expression.

GLOSSARY

tool provider
An organization or software vendor that provides tools used for the devel op-
ment, packaging, and deployment of J2EE applications.

topic
See publish-subscribe messaging system.

transaction
An atomic unit of work that modifies data. A transaction encloses one or
more program statements, all of which either complete or roll back. Transac-
tions enable multiple users to access the same data concurrently.

transaction attribute
A value specified in an enterprise bean’s deployment descriptor that is used
by the EJB container to control the transaction scope when the enterprise
bean's methods are invoked. A transaction attribute can have the following
values: Required, RequiresNew, Supports, NotSupported, Mandatory, OF Never.

transaction isolation level
The degree to which the intermediate state of the data being modified by a
transaction is visible to other concurrent transactions and data being modi-
fied by other transactionsisvisibletoit.

transaction manager
Provides the services and management functions required to support transac-
tion demarcation, transactional resource management, synchronization, and
transaction context propagation.

Unicode
A standard defined by the Unicode Consortium that uses a 16-bit code page
that maps digitsto characters in languages around the world. Because 16 bits
covers 32,768 codes, Unicode is large enough to include all the world’s lan-
guages, with the exception of ideographic languages that have a different
character for every concept, such as Chinese. For more information, see
http://www.unicode.org/.

Univer sal Description, Discovery and Integration (UDDI) project
Anindustry initiative to create a platform-independent, open framework for
describing services, discovering businesses, and integrating business ser-
vices using the Internet, as well as aregistry. It is being developed by aven-
dor consortium.

Universal Standard Products and Services Classification (UNSPSC)
A schema that classifies and identifies commodities. It is used in sell-side
and buy-side catalogs and as a standardized account code in anayzing
expenditure.

297

http://www.unicode.org/

298 GLOSSARY

unparsed entity
A general entity that contains something other than XML. By its nature, an
unparsed entity contains binary data.

URI
Uniform resource identifier. A globally unique identifier for an abstract or
physical resource. A URL isakind of URI that specifies the retrieval proto-
col (http or hitps for web applications) and physical location of a resource
(host name and host-relative path). A URN is another type of URI.

URL
Uniform resource locator. A standard for writing a textual reference to an
arbitrary piece of datain the World Wide Web. A URL looks like this: proto-
col://host/localinfo Where protocol specifies a protocol for fetching the object
(such as nttp or ftp), host specifies the Internet name of the targeted host, and
localinfo is a string (often a file name) passed to the protocol handler on the
remote host.

URL path
The part of a URL passed by an HTTP request to invoke a serviet. A URL
path consists of the context path + servlet path + path info, where

» Context path is the path prefix associated with a servlet context of which
the servlet isapart. If this context is the default context rooted at the base
of the web server’'s URL namespace, the path prefix will be an empty
string. Otherwise, the path prefix starts with a/ character but does not end
with a/ character.

» Servlet path is the path section that directly corresponds to the mapping
that activated this request. This path starts with a/ character.

» Pathinfo isthe part of the request path that is not part of the context path
or the servlet path.

URN
Uniform resource name. A unique identifier that identifies an entity but
doesn't tell whereit islocated. A system can use a URN to look up an entity
locally before trying to find it on the web. It also alows the web location to
change, while still allowing the entity to be found.

user data constraint
Indicates how data between a client and aweb container should be protected.
The protection can be the prevention of tampering with the data or preven-
tion of eavesdropping on the data.

GLOSSARY

user (security)
An individual (or application program) identity that has been authenticated.
A user can have a set of roles associated with that identity, which entitles the
user to access all resources protected by those roles.

valid
A vaid XML document, in addition to being well formed, conforms to all
the constraints imposed by a DTD. It does not contain any tags that are not
permitted by the DTD, and the order of the tags conformsto the DTD’s spec-
ifications.

validating par ser
A parser that ensures that an XML document is valid in addition to being
well formed. See also parser.

value-binding expression
A JavaServer Faces EL expression that refers to a property of a backing
bean. A component tag uses this expression to bind the associated compo-
nent’s value or the component instance to the bean property. If the compo-
nent tag refers to the property via its value attribute, then the component’s
value is bound to the property. If the component tag refers to the property via
its binding attribute then the component itself is bound to the property.

virtual host
Multiple hosts plus domain names mapped to asingle | P address.

W3C
World Wide Web Consortium. The international body that governs Internet
standards. Its web site is http://www.w3.org/.

WAR file
Web application archivefile. A JAR archive that contains a web module.
war ning
A SAX parser warning is generated when the document’'s DTD contains
duplicate definitions and in similar situations that are not necessarily an error
but which the document author might like to know about, because they could
be. See also fatal error, error.

Web application
An application written for the Internet, including those built with Java tech-
nologies such as JavaServer Pages and servlets, as well as those built with
non-Java technologies such as CGI and Perl.

Web application, distributable
A web application that uses J2EE technology written so that it can be
deployed in a web container distributed across multiple Java virtual

299

http://www.w3.org/

300

GLOSSARY

machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

Web component
A component that provides services in response to requests; either a servlet
or a JSP page.

Web container
A container that implements the web component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for web components
that includes security, concurrency, life-cycle management, transaction,
deployment, and other services. A web container provides the same services
as a JSP container as well as afederated view of the J2EE platform APIs. A
web container is provided by aweb or J2EE server.

Web container, distributed
A web container that can run aweb application that is tagged as distributable
and that executes across multiple Java virtual machines running on the same
host or on different hosts.

Web container provider
A vendor that supplies aweb container.

Web module
A deployable unit that consists of one or more web components, other
resources, and a web application deployment descriptor contained in a hier-
archy of directories and filesin a standard web application format.

Web resource
A static or dynamic object contained in a web application that can be refer-
enced by aURL.

Web resour ce collection
A list of URL patterns and HTTP methods that describe a set of web
resources to be protected.

Web server

Software that provides services to access the Internet, an intranet, or an
extranet. A web server hosts web sites, provides support for HTTP and other
protocols, and executes server-side programs (such as CGI scripts or serv-
lets) that perform certain functions. In the J2EE architecture, a web server
provides services to aweb container. For example, aweb container typically
relies on aweb server to provide HTTP message handling. The J2EE archi-
tecture assumes that a web container is hosted by a web server from the
same vendor, so it does not specify the contract between these two entities.
A web server can host one or more web containers.

GLOSSARY

Web server provider
A vendor that supplies aweb server.

Web service

An application that exists in a distributed environment, such as the Internet.
A web service accepts a request, performs its function based on the request,
and returns a response. The request and the response can be part of the same
operation, or they can occur separately, in which case the consumer does not
need to wait for a response. Both the request and the response usually take
the form of XML, a portable data-interchange format, and are delivered over
awire protocol, such asHTTP.

well-formed
An XML document that is syntactically correct. It does not have any angle
brackets that are not part of tags, all tags have an ending tag or are them-
selves self-ending, and al tags are fully nested. Knowing that a document is
well formed makes it possible to process it. However, a well-formed docu-
ment may not be valid. To determine that, you need a validating parser and a
DTD.

Xalan
Aninterpreting version of XSLT.

XHTML
An XML look-alike for HTML defined by one of several XHTML DTDs.
To use XHTML for everything would of course defeat the purpose of XML,
because the idea of XML isto identify information content, and not just to
tell how to display it. You can reference it in a DTD, which allows you to
say, for example, that the text in an element can contain and tags
rather than being limited to plain text.

XLink
The part of the XLL specification that is concerned with specifying links
between documents.

XLL
The XML Link Language specification, consisting of XLink and X Pointer.

XML
Extensible Markup Language. A markup language that alows you to define
the tags (markup) needed to identify the content, data, and text in XML doc-
uments. It differs from HTML, the markup language most often used to
present information on the Internet. HTML has fixed tags that deal mainly
with style or presentation. An XML document must undergo a transforma-
tion into alanguage with style tags under the control of a style sheet before it
can be presented by a browser or other presentation mechanism. Two types

301

302

GLOSSARY

of style sheets used with XML are CSS and XSL. Typically, XML is trans-
formed into HTML for presentation. Although tags can be defined as needed
in the generation of an XML document, a document type definition (DTD)
can be used to define the elements allowed in a particular type of document.
A document can be compared by using the rulesin the DTD to determine its
validity and to locate particular elements in the document. A web services
application’s J2EE deployment descriptors are expressed in XML with sche-
mas defining allowed elements. Programs for processing XML documents
use SAX or DOM APIs.

XML registry
Seeregistry.

XML Schema
The W3C specification for defining the structure, content, and semantics of
XML documents.

XPath
An addressing mechanism for identifying the parts of an XML document.

XPointer
The part of the XLL specification that is concerned with identifying sections
of documents so that they can be referenced in links or included in other
documents.

XSL
Extensible Stylesheet Language. A standard that lets you do the following:

» Specify an addressing mechanism, so that you can identify the parts of an
XML document that a transformation appliesto (XPath).

» Specify tag conversions, so that you can convert XML datainto different
formats (XSLT).

» Specify display characteristics, such page sizes, margins, and font heights
and widths, as well as the flow objects on each page. Information fillsin
one area of a page and then automatically flows to the next object when
that areafills up. That allows you to wrap text around pictures, for exam-
ple, or to continue a newsdletter article on a different page (XSL-FO).

XSL-FO
A subcomponent of XSL used for describing font sizes, page layouts, and
how information flows from one page to another.

XSLT
Extensible Stylesheet Language Transformations. An XML document that
controls the transformation of an XML document into another XML docu-
ment or HTML. The target document often has presentation-related tags dic-

GLOSSARY 303

tating how it will be rendered by a browser or other presentation mechanism.
XSLT was formerly a part of XSL, which also included a tag language of
style flow objects.

XSLTC
A compiling version of XSLT.

304

GLOSSARY

Numerics
43996
B-Head
Registering the J2EE Ap-
plication Server 24

A
abstract schemas 111
deployment descriptors 111
hidden from clients 116
naming conventions 123
access methods
examples 230
local interfaces 225
persistent fields 112, 215
primary keys 243
relationship fields 113, 216
addChildElement method 63
addTextNode method 63
Admin Console 23
starting 25-26
applet containers 10
applets 4, 6
application client containers 10
application clients 4
examples 258

| ndex

Application Server
downloading xii
installation tips xii
server logs 26
starting 24
stopping 25
tools 23
user interface technologies 22

AttachmentPart Class 57, 72
creating objects 72
headers 73

attachments 56
adding 72
SAAJ example 99

attributes
SOAP envelope 64

B
bean-managed persistence
defined 110
EJB containers
examples 167, 193, 202
relationships 110
businesslogic 106, 180
business methods 117
client calls 145

305

306

INDEX

examples 220

exceptions 146

local interfaces 225

message-driven beans 260

requirements 145
business objects 109, 167

C
cal method 58-59, 67
cdl object 47
cascade deletes 251
close method 68
CMP
See container-managed-per-
sistence
CMR
See container-managed rela-
tionships
connection factories, IMS
creating 260
looking up 258
connections, SAAJ58
closing 68
poi nt-to-point 67
connectors
See J2EE Connector architec-
ture
contai ner-managed
111
cascade deletes 251
EJB QL 111, 250
examples 209
one-to-many 247
one-to-one 247
persistent fields 215
primary keys 247
compound 249

persistence

primitive types 248
unknown 243, 247
relationship fields 216
relationships 110
table mapping 250
container-managed relationships
245
bidirection 210
bidirectional 113
defined 111
direction 118
EJB QL 114
examples 210
local access 118
many-to-many 113
many-to-one 113
multiplicity 113, 210
one-to-many 113
one-to-one 113
self-referential 246
unidirectional 114, 247
containers 8
configurable services 9
non-configurable services 9
Seeaso
applet containers
application client contain-
ers
EJB containers
web containers
services 8
Context interface 133
create method
bean-managed persistence 172
compared to ejbCreate Method
148
examples 144, 195
lifecycles 123, 125

requirements 149, 183, 224
createTimer method 159

D
databases
bean-managed persistence 167
BLOBs 251
business methods 178
clients 106, 116
CLOBs 251
connections 124, 146, 164
creating tables 168
deleting rows 174
ElStier 2
entity beans 109
exceptions 164
foreign keys 113, 188
inserting rows 172
message-driven beans and 115
persistent fields 112
portable beans 111
primary keys 188, 204
read-only data 109
referential constraints 188
relationships for bean-man-
aged persistence 187
See also persistence
synchronizing with entity
beans 175
table relationships
many-to-many 201
one-to-many 192
one-to-one 188
deployment descriptors 13
abstract schema 111
contai ner-managed
tence 215

persis-

INDEX 307

creating 121
enterprise beans 121, 123
portable 13
primary key class 204
runtime 13
deploytool
redeploy operation 137
starting 25
destinations, IMS
creating 260
looking up 258
detachNode method 62
Detail interface 82
DetailEntry interface 82
DIl 47
DIl clients
examples 47
DNS 20
DOM
SAAJand 58, 72, 95
domains 24
downloading
Application Server xii
J2EE 1.4 SDK xii
dynamic invocation interface
See DIl
dynamic proxies 44
dynamic proxy clients
examples 44

E
EAR files 13
ebXML 12, 18
ElStier 8
EJB

timer service 159
EJB containers 10

308

INDEX

bean-managed persistence
See bean-managed persis-
tence
contai ner-managed
tence 110
generating primary keys 243
instance contexts 158
instantiating enterprise beans
123, 144
onMessage method, invoking 261
persistence 209
persistent fields 215
relationships 111, 209
services 105
EJB JAR files 122
contai ner-managed
ships 118
portability 122
EJB QL
deployment descriptors 111
EJB containers 111
finder methods 111, 237
relationship direction 114
select methods 217
egibActivate method 124126
gjbCreate method
bean-managed persistence 172
compared to create method 148
contai ner-managed persis-
tence 223
examples 143, 172, 194, 223,
229
life cycles 123, 125, 127
message-driven beans 261
primary keys 126, 206, 243
requirements 145
gjbFindByPrimaryKey method 177, 206
EJBHome interface 148

persis-

relation-

ejbLoad Mmethod 175, 198, 202, 223
EJBObject interface 149

gjbPassivate method 124-125, 127
gjbPostCreate method 125, 174, 223

ejbRemove method
bean-managed persistence
174, 203
contai ner-managed persis-
tence 223
life cycles 124-125, 127
message-driven beans 261

ejbStore method 175, 223
ejbTimeout Method 159-160
enterprise beans 6, 15
accessing 116
contai ner-managed
tence
See container-managed
persistence
contents 121
defined 105
deployment 122
distribution 119
entity beans
See entity beans
environment entries 156
exceptions 164
home methods 250
implementor of business logic
6
interfaces 116, 121
lifecycles117, 123
local access 118
local home interfaces
See local home interfaces
local interfaces
See local interfaces
lookups 134

persis-

message-driven beans. See
message-driven beans
performance 118-119, 121
persistence
See persistence
references 134
remote access 117
remote interfaces
See remote interfaces
See also J2EE components
session beans
See session beans
state 113
types 7, 107
web service endpoint interfac-
es 120
web services 107-108, 116,
120, 153
Enterprise Information Systems
See EIStier
Enterprise JavaBeans Query Lan-
guage
See EJB QL
entity beans 7, 15, 109
bean-managed persistence
See bean-managed persis-
tence
contai ner-managed persis-
tence
See container-managed
persistence
contai ner-managed Versus
bean-managed 214
equality 158
finder methods 118
garbage collection 127
persistent state 114
primary keys

INDEX 309

See primary keys
EntityBean iNterface 169
EntityContext interface 158, 174
environment entries 156
examples
access methods 230
bean-managed persistence
167, 193, 202
business methods 220
contai ner-managed persis-
tence 209, 239, 244
container-managed relation-
ships 210
create method 144, 195
DIl clients 47
directory structure xiii
downloading xii
dynamic proxy clients 44
ejbCreate method 143, 172, 194,
223, 229
finder methods 189, 237
home interfaces 148, 182
local interfaces 224, 230
location xii
persistent fields 216
primary keys 204, 242
relationship fields 217
remote interfaces 149
required software xii
SAAJ
attachments 99
DOM 95
headers 93
request-response 86
SOAP faults 101
session beans 132, 139, 157
timer service 162
web clients 133

INDEX

web services 30

exceptions
business methods 146
create method 149, 183
gibCreate method 173
ejbCreate method 145
gbFindByPrimaryKey method 178
ejbRemove method 175
enterprise beans 164
javax.ejb package 165
rolling back transactions 165

F
findByPrimaryKey method 199, 230,
233
finder methods 250
bean-managed persistence 176
compared to select methods
217
contai ner-managed
tence 214
examples 189, 237
home interfaces 183
local home interfaces 224
returning collections 195
foreign keys 247
fully qualified names 63

persis-

G

garbage collection 127
getAttachments method 74
getBody method 62
getEIBObject method 174
getEnvelope method 62
getHeader method 62
getinfo method 161

getNextTimeout method 161
getObject method 158
getPrimaryKey method 174, 207
getSOAPBody method 62
getSOAPHeader method 62
getSOAPPart method 61
getters

See access methods
getTimeRemaining method 161
getvalue method 68

H
helper classes 122, 142, 192
home interfaces 148, 182
defined 117
examples 148, 182
home methods 181
home methods 180, 183
HTTP 29-30

I
Initial Context i nterface 20
isidentica method 158

J

J2EE 1.4 platform
APIs 15

J2EE 1.4 SDK
downloading xii

J2EE applications 2
debugging 26
deploying 135
iterative development 137
tiers 2

J2EE clients 4

application clients 4
See also application clients
web clients 4
See also web clients
web clients versus application
clients5
J2EE components 3
types 3
J2EE Connector architecture
J2EE modules 13-14
application client modules 14
EJB modules 14, 122
resource adapter modules 14
web modules
See web modules
J2EE platform 1-2
J2EE security model 9
J2EE servers 10
J2EE transaction model 9
J2SE SDK 42
JAAS 20
JAF 17
Java API for XML Processing
See JAXP
Java APl for XML Registries
See JAXR
Java API for XML-based RPC
See JAX-RPC
Java Authentication and Authori-
zation Service
See JAAS
Java Message Service
See MS
Java Message Service (JMS) API
message-driven beans. See
message-driven beans
Java Naming and Directory Inter-
face

INDEX

See INDI
Java Servlet technology 16
See also servlets
Java Transaction AP
See JTA
JavaBeans Activation Framework
See JAF
JavaBeans components 5, 43
JavaMail API 17
JavaServer Faces 22
JavaServer Pages (JSP) technolo-
gy 16
See also JSP pages
JavaServer Pages Standard Tag
Library
See JSTL
javax.activation.DataHandler Class 73—74
javax.xml.soap package 53
javax.xml.transform.Source i nterface 70
JAXM specification 53
JAXP 17
JAXR 18
JAX-RPC 17
clients 43
defined 29
JavaBeans components 43
mapping files 34
service endpoint interface
interface configuration
files 34
service endpoint interfaces 31
conformance rules 32
specification 51
supported types 42
WSDL files 34
JAXRPC
clients
invoking stubs 40

311

312 INDEX

JDBC API 19 message-driven beans 7, 15, 114
IMS accessing 115
J2EE examples 255 defined 114
JMSAPI 16 examples 255
JNDI 19, 133 garbage collection 127
data source naming subcon- onMessage method 115, 261
texts 20 reguirements 260
enterprise bean naming sub- MessageFactory Class 60
contexts 20 messages, SAAJ
environment naming contexts accessing elements 61
20 adding body content 62
lookup method 134 attachments 56
naming and directory services creating 60
20 getting the content 68
naming context 133 overview 54
naming contexts 20 MIME
naming environments 20 headers 58
naming subcontexts 20
JSP pages
URLSsfor running 136 N
JSTL 22 Name interface 62
JTA 16 names
fully qualified 63, 65
local 65-66
L namespaces 63
LDAP 20 prefix 64
local home interfaces 224 NDS 20
defined 118 NIS 20
local interfaces 225 nodes
defined 118 SAAJand 54

examples 224, 230
requirements 185

local names 65-66 O
onMessage method
message-driven beans 115,
M 261

message listeners
JMS 114

P
persistence
bean-managed
See bean-managed persis-
tence
contai ner-managed
See container-managed
persistence
entity beans 109
session beans 107
types 110
persistent fields 112
examples 216
physical schemas 111
PointBase database 23
starting 25
point-to-point connection, SAAJ
67
prerequisites Xi
primary keys 247
automatically generating 243,
247
bean-managed persistence 204
composite 204, 241
compound 249
contai ner-managed
tence 241
defined 110
examples 204, 242
methods for setting 126
primitive types 248
returned by creaste method 172
See aASO gbFindByPrimaryKey
method
unknown 243, 247
printing the tutorial xiv
proxies 29-30, 36

persis-

INDEX 313

Q
QName Object 44

queues
looking up 258

R
relationship fields
defined 113
direction 113
examples 217
modifying by local clients 234
relationships
bean-managed persistence 111
contai ner-managed
See container-managed re-
lationships
multiplicities 113
remote interfaces
defined 117
examples 149
requirements 150
remote procedure calls 29
remove method
bean-managed persistence 174
life cycles 124-125
request-response messaging 58
resource adapters 19
RPC 29

S

SAAJ 18, 53
examples 85
messages 54
overview 54
specification 53
tutorial 59

INDEX

select methods 217, 239, 250
selector methods
See select methods
session beans 7, 15, 107
activation 124
clients 107
compared to entity beans 109
equality 158
examples 132, 139, 157
passivation 124
requirements 140
stateful 108-109
stateless 108-109
web services 120, 154
SessionContext interface 158
setContent method 70, 73
setEntityContext method 125, 195,
198
setMessageDrivenContext method 127
setSessionContext method 123, 159
Setters
See access methods
SOAP 29-30, 51, 53
body 65
adding content 62
Content-Type header 73
envelope 64
headers
adding content 69
Content-1d 73
Content-Location 73
Content-Type 73
example 93
SOAP faults 80
detail 81
fault actor 81
fault code 81
fault string 81

retrieving information 83

SAAJ example 101
SOAP messages 12
SOAP with Attachments API for
Java

See SAAJ
SOAPBody interface 55, 65
SOAPBodyElement interface 62, 65,
91
SOAPConnection class 58

getting objects 67
SOAPElement interface 63, 91
SOAPEnvelope interface 55, 62, 64
SOAPFactory class 62
SOAPFault interface 80

creating and populating ob-

jects 82

detail element 81

fault actor element 81

fault code element 81

fault string element 81
SOAPHeader interface 55, 69
SOAPHeaderElement interface 63, 69
SOAPMessage Class 55, 61
SOAPPart Class 55, 58, 63

adding content 70
SQL 15, 19, 111, 168, 172-173,
175176
static stubs 36
stubs 30, 36
Sun Java System Application
Server Platform Edition 8 21

See also Application Server

.
TimedObject interface 159
Timer interface 159

timer service 159
cancelling timers 160
creating timers 159
examples 162
exceptions 161
getting information 161
saving timers 160
transactions 161
TimerHandle interface 159
TimerService interface 159
transactions
boundaries 110
exceptions
See exceptions
transactions
message-driven beans 116
shared data 110
timer service 161
typographical conventions xiv

U
uUDDI 12
accessing registrieswith SAAJ
86
unsetEntityContext method 126
utility classes 122, 168

\Y
value types 43
verifier 23

W

W3C 30, 51

web clients 4
examples 133

INDEX 315

web components 6
applets bundled with 6
types 6
utility classes bundled with 6
web containers 10
web modules 14
web services 10
clients 43
EJB. Seeenterprise beans, web
services
endpoint interfaces 154
examples 30
work flows 109
wscompile 23
wscompile tool 31
wsdeploy 23
WSDL 12, 30, 42, 44, 51

X
XML 11, 29, 42
documents, and SAAJ 54
elements in SOAP messages
54

316 INDEX

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	About the Examples
	Required Software
	Tutorial Bundle
	NetBeans IDE 4.1
	Application Server

	Building the Examples
	Tutorial Example Directory Structure

	Further Information
	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Overview
	Distributed Multitiered Applications
	J2EE Components
	J2EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeans™ Component Architecture
	J2EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	J2EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format
	UDDI and ebXML Standard Formats

	Packaging Applications
	J2EE 1.4 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Pages Technology
	Java Message Service API
	Java Transaction API
	JavaMail API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java API for XML-Based RPC
	SOAP with Attachments API for Java
	Java API for XML Registries
	J2EE Connector Architecture
	JDBC API
	Java Naming and Directory Interface
	Java Authentication and Authorization Service
	Simplified Systems Integration

	Sun Java System Application Server Platform Edition 8
	Technologies
	JavaServer Pages Standard Tag Library
	JavaServer Faces

	Tools
	Registering the Application Server
	Starting and Stopping the Application Server
	Starting the Admin Console
	Starting and Stopping the PointBase Database Server
	Debugging J2EE Applications
	Using the Server Log
	Using the NetBeans Debugger

	Building Web Services with JAX-RPC
	Setting the Port
	Creating a Simple Web Service and Client with JAX-RPC
	Generating and Coding the Service Endpoint Interface and Implementation Class
	Building the Service
	The compile Task
	The Hello_wscompile Task
	The dist Task
	Specifying the Endpoint Address

	Deploying the Service
	Undeploying the Service

	Static Stub Clients
	J2EE Container-Generated Static Stub Client
	IDE-Generated Static Stub Client
	Building the Static Stub Client

	Running the Static Stub Client

	Types Supported by JAX-RPC
	J2SE SDK Classes
	Primitives
	Arrays
	Value Types

	Web Service Clients
	Dynamic Proxy Client
	Coding the Dynamic Proxy Client
	Building and Running the Dynamic Proxy Client

	Dynamic Invocation Interface Client
	Coding the DII Client
	Building and Running the DII Client

	Web Services Interoperability and JAX- RPC
	Further Information

	SOAP with Attachments API for Java
	Overview of SAAJ
	Messages
	The Structure of an XML Document
	What Is in a Message?
	SAAJ and DOM

	Connections
	SOAPConnection Objects

	Tutorial
	Creating and Sending a Simple Message
	Creating a Message
	Parts of a Message
	Accessing Elements of a Message
	Adding Content to the Body
	Getting a SOAPConnection Object
	Sending a Message
	Getting the Content of a Message

	Adding Content to the Header
	Adding Content to the SOAPPart Object
	Adding a Document to the SOAP Body
	Manipulating Message Content Using SAAJ or DOM APIs
	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object

	Adding Attributes
	Header Attributes

	Using SOAP Faults
	Overview of SOAP Faults
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request.java
	MyUddiPing.java
	Setting Up
	Examining MyUddiPing
	Running MyUddiPing

	HeaderExample.java
	Running HeaderExample

	DOMExample.java and DOMSrcExample.java
	Examining DOMExample
	Examining DOMSrcExample
	Running DOMExample and DOMSrcExample

	Attachments.java
	Running Attachments

	SOAPFaultTest.java
	Running SOAPFaultTest

	Further Information

	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	State Management Modes
	Stateless Session Beans
	Stateful Session Beans

	When to Use Session Beans

	What Is an Entity Bean?
	What Makes Entity Beans Different from Session Beans?
	Persistence
	Shared Access
	Primary Key
	Relationships

	Container-Managed Persistence
	Abstract Schema
	Multiplicity in Container-Managed Relationships
	Direction in Container-Managed Relationships

	When to Use Entity Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session and Entity Beans?
	When to Use Message-Driven Beans

	Defining Client Access with Interfaces
	Remote Clients
	Local Clients
	Local Interfaces and Container-Managed Relationships
	Deciding on Remote or Local Access
	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Life Cycles of Enterprise Beans
	The Life Cycle of a Stateful Session Bean
	The Life Cycle of a Stateless Session Bean
	The Life Cycle of an Entity Bean
	The Life Cycle of a Message-Driven Bean

	Further Information

	Getting Started with Enterprise Beans
	Creating the J2EE Application
	Creating the Enterprise Bean
	Creating the ConverterBean Enterprise Bean
	Adding Business Methods

	Creating the Web Client
	Coding the Web Client
	Locating the Home Interface
	Invoking Business Methods

	Specifying the Enterprise Application’s Default URL
	Deploying the J2EE Application
	Running the Web Client
	Modifying the J2EE Application
	Modifying a Deployment Setting

	Session Bean Examples
	The CartBean Example Application
	Creating the Cart EJB Project
	Creating the Session Bean
	Helper Classes
	The ejbCreate Methods
	Business Methods
	Managing Your Import Statements

	Session Bean Interfaces
	Home Interface
	Remote Interface
	Business Interface

	Building and Deploying the Application
	The CartClient Application
	Creating the CartClient Application
	Opening the CartClient Project
	Running the CartClient Application

	The HelloService Web Service Example
	Opening the HelloService Example
	Web Service Endpoint Interface
	Stateless Session Bean Implementation Class
	Running the HelloWebClient Application

	Other Enterprise Bean Features
	Accessing Environment Entries
	Comparing Enterprise Beans
	Passing an Enterprise Bean’s Object Reference

	Using the Timer Service
	Creating Timers
	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The TimerSessionBean Example
	Running the TimerSessionBean Example

	Handling Exceptions

	Bean-Managed Persistence Examples
	The SavingsAccountBean Example
	Creating the SavingsAccount Project
	Creating the SavingsAccount Project
	Creating the SavingsAccount Enterprise Bean

	Entity Bean Class
	The EntityBean Interface
	The Database Lookup
	Database Access Methods
	The ejbCreate Method
	The ejbPostCreate Method
	The ejbRemove Method
	The ejbLoad and ejbStore Methods
	The Finder Methods
	The Business Methods
	The Home Methods

	Home Interface
	create Method Definitions
	Finder Method Definitions
	Home Method Definitions

	Remote Interface
	Running the SavingsAccount Example
	Creating the Sample Database
	Deploying the Application
	Running the Client

	Mapping Table Relationships for Bean- Managed Persistence
	One-to-One Relationships
	Running the StorageBinBean Example

	One-to-Many Relationships
	A Helper Class for the Child Table
	Running the OrderBean Example
	An Entity Bean for the Child Table
	Running the SalesRepBean Example

	Many-to-Many Relationships
	Running the EnrollerBean Example

	Primary Keys for Bean-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Getting the Primary Key

	Container-Managed Persistence Examples
	Overview of the Roster Module
	Creating the Roster EJB Module
	Creating the Project
	Creating the Database Tables
	Generating the CMP Entity Beans

	The PlayerBean Code
	Entity Bean Class
	Differences between Container-Managed and Bean- Managed Code
	Access Methods
	Finder and Select Methods
	Helper Classes
	Business Methods
	Entity Bean Methods

	Refactoring Entity Bean Methods
	Local Home Interface
	Local Interface

	Creating the RosterBean Session Bean
	Method Invocations in the Roster Module
	Creating a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Adding a Player to a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Removing a Player
	1. RosterClient
	2. RosterBean

	Dropping a Player from a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting the Players of a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting a Copy of a Team’s Players
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Finding the Players by Position
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Getting the Sports of a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Building and Running the Roster Example
	Building and Deploying the EJB Module
	Running the Client Application

	Primary Keys for Container-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Generating Primary Key Values

	Advanced CMP Topics: The Order Example
	Structure of Order
	Bean Relationships in Order
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in Order’s Entity Beans
	Unknown Primary Keys
	Primitive Type Primary Keys
	Compound Primary Keys

	Entity Bean Mapped to More Than One Database Table
	Finder and Selector Methods
	Using Home Methods
	Cascade Deletes in Order
	BLOB and CLOB Database Types in Order
	Building and Running the Order Example
	Building and Deploying the EJB Module
	Running the OrderClient Example

	A Message-Driven Bean Example
	Example Application Overview
	The SimpleMessageClient Application
	Creating the SimpleMessageClient application

	The Message-Driven Bean
	Creating the SimpleMessage EJB Module
	Creating the SimpleMessageMDB
	The ejbCreate and ejbRemove Methods
	The onMessage Method

	Building and Deploying SimpleMessage Module
	Building and Deploying the Application
	Running the Client
	Removing the Administered Objects

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

